Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery
Abstract
:1. Introduction
- How effective are spectral vegetation indices (SVIs) and fractional cover of growth form types, derived from high spatial resolution aerial orthoimages, as spatially explicit surrogates for fuel load distributions, in predicting ROS?
- How strongly associated are directional slope angle and slope orientation relative to fire spread direction with ROS?
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.3. Fire Feature Delineation and Landscape Sampling Units
2.4. Orthoimage Processing
2.5. Topographic Data Processing
2.6. Landscape Covariate Sampling and Stratification
2.7. Statistical Analyses
3. Results
3.1. Fire Spread Behavior
3.2. Wind Conditions During Fire Sequences
3.3. Fuel Covariate Relationships with ROS
3.4. Topographic Covariate Relationships with ROS
3.5. Multivariate Analyses
4. Discussion
4.1. Fuel Covariate Findings
4.2. Topographic Covariate Findings
4.3. Weather-Related Findings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonia, C.M.; Defires, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Cal Fire Incident Archive. Available online: http://www.fire.ca.gov/incidents/2017 (accessed on 18 January 2020).
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest and Range Experiment Station Research Paper INT-115; USDA Forest Service: Ogden, UT, USA, 1972.
- Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [Google Scholar] [CrossRef]
- Sanchez-Monroy, X.; Mell, W.; Torres-Arenas, J.; Butler, B.W. Fire spread upslope: Numerical simulation of laboratory experiments. Fire Saf. J. 2019, 108, 102844. [Google Scholar] [CrossRef]
- Dupuy, J.L.; Marachal, J.; Portier, D.; Valette, J.C. The effects of slope and fuel bed width on laboratory fire behavior. Int. J. Wildland Fire 2011, 20, 272–288. [Google Scholar] [CrossRef]
- Morandini, F.; Silvani, X. Experimental investigation of the physical mechanisms governing the spread of wildfires. Int. J. Wildland Fire 2010, 19, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Stephens, S.L.; Weise, D.R.; Fry, D.L.; Keiffer, R.J.; Dawson, J.; Koo, E.; Potts, J.; Pagni, P.J. Measuring the rate of spread of chaparral prescribed fires in northern California. Fire Ecol. 2008, 4, 74–86. [Google Scholar] [CrossRef]
- Clements, C.B.; Lareau, N.P.; Seto, D.; Contezac, J.; Davis, B.; Teske, C.; Zajkowski, T.J.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; et al. Fire weather conditions and fire–atmosphere interactions observed during low-intensity prescribed fires–RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 90–101. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE, Fire Area Simulator—Model Development and Evaluation; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998.
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. Prediction of fire spread in grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Can. J. For. Res. 2005, 35, 1626–1639. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wild. Fire 2015, 24, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Achtemeier, G.L. Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling. Int. J. Wildland Fire 2013, 22, 148–156. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Evaluating a model for predicting active crown fire rate of spread using wildfire observations. Can. J. For. Res. 2006, 36, 3015–3028. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Canfield, J.; Lin, R.R.; Mell, W.; Sieg, C.H.; Pimont, F.; Ziegler, J. Evaluating crown fire rate of spread predictions from physics-based models. Fire Tech. 2016, 52, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Riley, K.; Thompson, M. An uncertainty analysis of wildfire modeling. Nat. Haz. Uncert. Assess. Mod. Dec. Sup. 2017, 223, 193–213. [Google Scholar]
- Cardil, A.; Mondedero, S.; Ramirez, J.; Silva, C.A. Assessing and reinitializing wildland fire simulations through satellite active fire data. J. Environ. Manag. 2019, 231, 996–1003. [Google Scholar] [CrossRef]
- Finney, M.A.; McHugh, C.W.; Grenfell, C.J. Stand- and landscape-level effects of prescribed burning on two Arizona Wildfires. Can. J. For. Res. 2005, 35, 1714–1722. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Sullivan, A.L. Mantras of wildland fire behaviour modelling: Facts or fallacies? Int. J. Wildland Fire 2017, 26, 973–981. [Google Scholar] [CrossRef]
- Riggan, P.J.; Tissell, R.G. Airborne remote sensing of wildland fires. Dev. Environ. Sci. 2008, 8, 139–168. [Google Scholar]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining extreme wildfire events: Difficulties, challenges, and impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Loudermilk, E.L.; O’Brien, J.J.; Mitchell, R.J.; Cropper, W.P.; Hiers, J.K.; Grunwald, S.; Grego, J.; Fernandez-Diaz, J.C. Linking complex forest fuel structure and fire behaviour at fine scales. Int. J. Wildland Fire 2012, 21, 882–893. [Google Scholar] [CrossRef]
- Ferreira, L.; Constantino, M.F.; Borges, J.G.; Garcia-Gonzalo, J. Addressing wildfire risk in a landscape-level scheduling model: An application in Portugal. Forest Sci. 2015, 61, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finney, M.A.; Seli, R.C.; McHugh, C.W.; Ager, A.A.; Bahro, B.; Agee, J.K. Simulation of long-term landscape-level fuel treatment effects on large wildfires. Int. J. Wildland Fire 2008, 16, 712–727. [Google Scholar] [CrossRef] [Green Version]
- Countryman, C.M. The concept of fire environment. Fire Manag. Today 2004, 64, 49–52. [Google Scholar]
- Albini, F.A. Estimating Wildfire Behavior and Effects; Intermountain Forest and Range Experiment Station General Technical Report; Department of Agriculture, Forest Service: Ogden, UT, USA, 1976.
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Spatial controls of historical fire regimes: A multiscale example from the interior west, USA. Ecology 2001, 82, 660–678. [Google Scholar] [CrossRef]
- Coen, J.L. Some new basics of fire behavior. Fire Manag. Today 2011, 71, 37. [Google Scholar]
- McKenzie, D.; Miller, C.; Falk, D.A. The Landscape Ecology of Fire; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; Intermountain Forest and Range Experiment Station Research Paper; USDA Forest Service: Ogden, UT, USA, 1981.
- Keane, R.E.; Burgan, R.; Van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 2001, 10, 301–319. [Google Scholar] [CrossRef]
- Beyers, J.L.; Riggan, P.J.; Weise, D.; Paysen, T.; Narog, M. Age-Class Mosaics and Wind-Driven Fire: Further Fuel for the Debate. 2012. Available online: https://digitalcommons.unl.edu (accessed on 18 February 2020).
- Riggan, P.J.; Franklin, S.E.; Brass, J.A.; Brooks, F.E. Perspectives on fire management in mediterranean ecosystems of southern California. In The Role of Fire in Mediterranean-Type Ecosystems; Springer: New York, NY, USA, 1994; pp. 140–162. [Google Scholar]
- Arroyo, L.A.; Healey, S.P.; Cohen, W.B.; Cocero, D.; Manzanera, J.A. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J. Geophys. Res. Biogeosci. 2006, 111, G04S04. [Google Scholar] [CrossRef] [Green Version]
- Uyeda, K.A.; Stow, D.A.; Riggan, P.J. Tracking MODIS NDVI time series to estimate fuel accumulation. Remote Sens. Lett. 2015, 6, 587–596. [Google Scholar] [CrossRef]
- Uyeda, K.A.; Stow, D.A.; Roberts, D.A.; Riggan, P.J. Combining ground-based measurements and MODIS-based spectral vegetation indices to track biomass accumulation in post-fire chaparral. Int. J. Remote. Sens. 2017, 38, 728–741. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: Hoboken, NJ, USA, 1974. [Google Scholar]
- Riaño, D.; Chuvieco, E.; Ustin, S.L.; Salas, J.; Rodríguez-Pérez, J.R.; Ribeiro, L.M.; Viegas, D.X.; Moreno, J.M.; Fernández, H. Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. Int. J. Wildland Fire 2007, 16, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote. Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Cocero, D.; Riano, D.; Martin, P.; Martınez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Garrigues, S.; Lacaze, R.; Baret, F.J.; Morisette, T.M.; Weiss, J.T.; Nickeson, M.; Fernandes, R.; Plummer, S.; Shabanov, N.V.; Myneni, R.B.; et al. Validation and intercomparison of global Leaf Area Index products derived from remote sensing data. J. Geophys. Res. Biogeosci. 2008, 113, G02028. [Google Scholar] [CrossRef]
- Butler, B.W.; Anderson, W.R.; Catchpole, E.A. Influence of Slope on Fire Spread Rate; RMRS-P-46CD; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2007; pp. 75–82.
- Potts, D.F.; Ryan, K.C.; Zurring, H.R. Stratified sampling for determining duff moisture in mountainous terrain. West. J. Appl. For. 1986, 11, 29–30. [Google Scholar] [CrossRef]
- Raaflaub, L.D.; Valeo, C.; Johnson, E.A. Slope effects on the spatial variations in duff moisture. Ecohydology 2012, 5, 819–825. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Effect of slope on fire spread rate. Can. For. Serv. Monthly Res. Notes 1977, 33, 7–8. [Google Scholar]
- McArthur, A.G. Fire behaviour in eucalyptus forests. In Forestry and Timber Bureau Leaflet; Commonwealth Department of National Development; Australian Government Publishing Service: Hawthorn, Australia, 1967; Volume 107. [Google Scholar]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Sullivan, A.L.; Sharples, J.J.; Matthews, S.; Plucinski, M.P.A. Downslope fire spread correction factor based on landscape-scale fire behaviour. Environ. Mod. Soft. 2014, 62, 153–163. [Google Scholar] [CrossRef]
- Blodgett, N.; Stow, D.A.; Franklin, J.; Hope, A.S. Effect of fire weather, fuel age and topography on patterns of remnant vegetation following a large fire event in southern California, USA. Int. J. Wildland Fire 2010, 19, 415–426. [Google Scholar] [CrossRef]
- Viedma, O.; Quesada, J.; Torres, I.; De Santis, A.; Moreno, J.M. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 2015, 18, 237–250. [Google Scholar] [CrossRef]
- Dong, X.U.; Li-min, D.; Guo-fan, S.; Lei, T.; Hui, W. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. J. For. Res. 2005, 16, 169–174. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohen, J.D.; Forthofer, J.M.; McAllister, S.S.; Gollner, M.J.; Gorham, D.J.; Saito, K.; Akafuah, N.K.; Adam, B.A.; English, J.D. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mermoz, M.; Kitzberger, T.; Veblen, T.T. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 2005, 86, 2705–2715. [Google Scholar] [CrossRef] [Green Version]
- Coen, J.L.; Stavros, E.N.; Fites-Kaufman, J.A. Deconstructing the King megafire. Ecol. Appl. 2018, 28, 1565–1580. [Google Scholar] [CrossRef]
- Coen, J.L.; Schroeder, W. The high park fire: Coupled weather-wildland fire model simulation of a windstorm-driven wildfire in Colorado’s Front Range. J. Geophys. Res. Atmos. 2015, 120, 131–146. [Google Scholar] [CrossRef]
- Wang, X.; Parisien, M.; Flannigan, M.D.; Parks, S.A.; Anderson, K.R.; Little, J.M.; Taylor, S.W. The potential and realized spread of wildfires across Canada. Glob. Chang. Biol. 2014, 20, 2518–2530. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.; Romme, W. Interaction of fire, fuels, and climate across Rocky Mountain Forests. BioScience 2004, 54, 661–667. [Google Scholar] [CrossRef]
- Ollero, A.; Merino, L. Unmanned aerial vehicles as tools for forest-fire fighting. For. Ecol. Manag. 2006, 234, S263. [Google Scholar] [CrossRef]
- Stow, D.A.; Riggan, P.J.; Storey, E.A.; Coulter, L.L. Measuring fire spread rates from repeat pass airborne thermal infrared imagery. Remote Sens. Lett. 2014, 5, 803–812. [Google Scholar] [CrossRef]
- Stow, D.A.; Riggan, P.J.; Schag, G.; Brewer, W.; Tissell, R.G.; Coen, J.L.; Storey, E.A. Assessing uncertainty and demonstrating potential for estimating fire rate of spread at landscape scales based on time sequential airborne thermal infrared imaging. Int. J. Remote. Sens. 2019, 40, 4876–4897. [Google Scholar] [CrossRef]
- Valero, M.M.; Rios, O.; Planas, E.; Pastor, E. Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildland Fire 2018, 27, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Loboda, T.V.; Csiszar, I.A. Reconstruction of Fire Spread within Wildland Fire Events in Northern Eurasia from the MODIS Active Fire Product. Glob. Planetary Chang. 2007, 56, 258–273. [Google Scholar] [CrossRef]
- Wooster, M.J. Small–scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 2002, 29, 1–23. [Google Scholar] [CrossRef]
- Hudak, A.T.; Freeborn, P.H.; Lewis, S.A.; Hood, S.M.; Smith, H.Y.; Hardy, C.C.; Kremens, R.J.; Butler, B.W.; Teske, C.; Tissell, R.G. The Cooney ridge fire experiment: An early operation to relate pre-, active, and post-fire field and remotely sensed measurements. Fire 2018, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Paugam, R.; Wooster, M.J.; Roberts, G. Use of handheld thermal imager data for airborne mapping of fire radiative power and energy and flame front rate of spread. IEE Trans. Geosci. Remote Sens. 2013, 51, 3385–3399. [Google Scholar] [CrossRef]
- Storey, M.A.; Price, O.F.; Sharples, J.J.; Bradstock, R.A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire 2020, 29, 459–472. [Google Scholar] [CrossRef]
- Riggan, P.J.; Hoffman, J.W. FireMapper™: A thermal-imaging radiometer for wildfire research and operations. In Proceedings of the 2000 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 25–25 March 2000; Volume 6, pp. 132–135. [Google Scholar]
- Leica Geosystems GIS & Mapping. ERDAS Imagine; Leica Geosystems: Atlanta, GA, USA, 2006. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Illyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Benoit, J.W.; Chen, S.C. FireBuster: A Tool for Fire Management; Pacific Southwest Research Station General Technical Report; USDA Forest Service: Ogden, UT, USA, 2019; Volume 261, pp. 25–37.
- ESRI 2020. ArcGIS Pro Desktop. Release 2.5.0; Environmental Systems Research Institute: Redlands, CA, USA, 2020. [Google Scholar]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef] [Green Version]
- Storey, E.A.; Stow, D.A.; Roberts, D.A. Evaluating uncertainty in Landsat-derived postfire recovery metrics due to terrain, soil, and shrub type variations in southern California. GIScience Remote Sens. 2020, 57, 352–368. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R. RichDEM: Terrain Analysis Software. Python Library. 2016. Available online: https://github.com/r-barnes/richdem (accessed on 21 January 2020).
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998; p. 190. [Google Scholar]
- Baston, D. Exactextractr: Fast Extraction from Raster Datasets Using Polygons; R PACKAGE Version 0.1; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Sandberg, D.V.; Riccardi, C.L.; Schaaf, M.D. Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System. Can. J. For. Res. 2007, 37, 2456–2463. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2010; Available online: http://www.R--project.org/ (accessed on 1 January 2019).
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013. [Google Scholar]
- McKight, P.E.; Najab, J. Kruskal-Wallis Test. In The Corsini Encyclopedia of Psychology; Wiley: Hoboken, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Stone, M.; Brooks, R.J. Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. J. R. Stat. Society. 1990, 52, 237–258. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Pawlowsky-Glahn, V.; Buccianti, A. Compositional Data Analysis: Theory and Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- MacNally, R.; Walsh, C.J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 2004, 13, 659–660. [Google Scholar]
- Moritz, M.A.; Moody, T.J.; Krawchuk, M.A.; Hughes, M.; Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 2011, 37, 4. [Google Scholar] [CrossRef] [Green Version]
- Viedma, O.; Angeler, D.G.; Moreno, J.M. Landscape structural features control fire size in a Mediterranean forested area of central Spain. Int. J. Wildland Fire 2009, 18, 575–583. [Google Scholar] [CrossRef]
- Holsinger, L.; Parks, S.A.; Miller, C. Weather, fuels, and topography impede wildland fire spread in western US landscapes. For. Ecol. Manag. 2016, 380, 59–69. [Google Scholar] [CrossRef]
- Vega, J.A.; Fernandes, P.; Cuiñas, P.; Fontúrbel, M.T.L.; Pérez, J.R.; Loureiro, C. Fire spread analysis of early summer field experiments in shrubland fuel types of northwestern Iberia. Forest Ecol. Manag. 2006, 234, S102. [Google Scholar]
- Catchpole, W.R.; Bradstock, R.A.; Choate, J.; Fogarty, L.G.; Gellie, N.; McCarthy, G.J.; McCaw, W.L.; Marsden-Smedley, J.B.; Pearce, G. Co-operative development of equations for heathland fire behavior. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Luso, Portugal, 16–20 November 1998; Volume 2, pp. 16–20. [Google Scholar]
- Sharples, J.J.; McRae, R.H.; Wilkes, S.R. Wind–terrain effects on the propagation of wildfires in rugged terrain: Fire channelling. Int. J. Wildland Fire 2012, 21, 282–296. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.; Jenkins, M.A.; Coen, J.; Packham, D. A Coupled Atmospheric-Fire Model: Convective Froude number and Dynamic Fingering. Int. J. Wildland Fire 1996, 6, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Coen, J.L.; Giglio, L.; Schroeder, W.; Tarnay, L.; Conway, S.; Quayle, B.; Stavros, E.N.; Schimel, D.; Stow, D.A.; Riggan, P.J. Whys and hows of large wildfires: Wind-driven, plume-driven and fire phenomena. In Proceedings of the 8th International Conference on Fire Ecology, Tucson, AZ, USA, 18–22 November 2019. [Google Scholar]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
Sequence | Date | Time-Range (Local) | Passes | Frames/ Pass | Ave. Time bet. Successive Passes (min) | GSD (m) |
---|---|---|---|---|---|---|
Detwiler | Thursday, 20 July 2017 | 3:24:57 to 4:13:30 p.m. | 7 | 25 | 8:07 | 13 |
Thomas 1 | Friday, 8 December 2017 | 2:23:12 to 5:36:11 p.m. | 23 | 30—90 | 10:09 | 10 |
Thomas 2 | Friday, 8 December 2017 | 2:22:54 to 5:46:11 p.m. | 26 | 30—90 | 8:24 | 10 |
Thomas 3 | Friday, 8 December 2017 | 4:29:49 to 5:12:19 p.m. | 7 | 15—30 | 7:05 | 10 |
Thomas 4 | Saturday, 9 December 2017 | 4:33:44 to 5:22:48 p.m. | 9 | 30—35 | 6:08 | 10 |
a. LSU Fuel Classes | b. GFs Stratified by Slope Angle | c. Slope Stratified by Fuels | |||
---|---|---|---|---|---|
FC Estimate | Fuel Class | Growth Form | Slope° | Slope° | Fuel Class |
≥75% Shrub | Shrub | LSU slope angle mean w/: | Shrub | ||
≥75% Herb | Herb | % Shrub | w/slope angle > 0° | Herb | |
≥75% Tree | Tree | % Herb | Tree | ||
≥75% Rock/Bare Soil | Rock/Bare Soil | % Tree | w/slope angle < 0° | Rock/Bare Soil | |
≥50% < 75% n cover | n-dominated Mix | % Rock/Bare Soil | n-dominated Mix | ||
<50% cover dominance | Full Mix | Full Mix |
Sequence (HH:MM:SS) | Source | Wind Speed (m s−1) | Wind Direction (Vector) | Relative Humidity (%) | Average ROS (m min−1) |
---|---|---|---|---|---|
Detwiler (0:48:33) | RAWS: | 4.5–4.9 | 259–265 | 23–24 | 6.23 |
FireBuster: | 3.1 | 101–104 | 14.8–16.3 | ||
Thomas 1 (3:12:59) | RAWS: | 0.4–1.3 | 8–194 | 7–18 | 12.86 |
FireBuster: | 0.9–1.8 | 80–219 | 10.5–30.2 | ||
Thomas 2 (3:23:17) | RAWS: | 0.4–1.3 | 8–194 | 7–18 | 11.84 |
FireBuster: | 1.3–1.8 | 118–198 | 10.5–28.6 | ||
Thomas 3 (0:42:30) | RAWS: | 0.4–1.3 | 8–194 | 7–18 | 7.05 |
FireBuster: | 1.3–3.1 | 73–208 | 8–71.9 | ||
Thomas 4 (0:49:04) | RAWS: | 1.8–2.7 | 257–266 | 10–13 | 20.37 |
FireBuster: | 6.7–8.9 | 220–273 | 7.3–16.1 |
Linear | |||||
n | β | ROS = β0 + β1Xi | Adj.R2 | p | |
Det. | 157 | 0.250 | 09.90 + 0.25(slope) | 0.160 | <0.001 |
Th 1. | 291 | 0.521 | 10.97 + 0.52(slope) | 0.413 | <0.001 |
Th 2. | 372 | 0.459 | 10.85 + 0.46(slope) | 0.432 | <0.001 |
Th 3. | 123 | 0.292 | 08.18 + 0.29(slope) | 0.494 | <0.001 |
Th 4. | 332 | 0.525 | 10.97 + 0.53(slope) | 0.194 | <0.001 |
Exponential | |||||
n | β | ROS = aebx | Adj. R2 | p | |
Det. | 157 | 0.031 | 6.65e(0.031)slope | 0.075 | <0.001 |
Th 1. | 291 | 0.044 | 7.40e(0.044)slope | 0.513 | <0.001 |
Th 2. | 372 | 0.046 | 6.77e(0.046)slope | 0.548 | <0.001 |
Th 3. | 123 | 0.043 | 5.63e(0.043)slope | 0.536 | <0.001 |
Th 4. | 332 | 0.028 | 7.75e(0.043)slope | 0.191 | <0.001 |
Power | |||||
n | β | ROS = axb | Adj.R2 | p | |
Det. | 157 | 1.936 | 2.20(slope)1.936 | 0.078 | <0.001 |
Th 1. | 291 | 4.979 | 1.13(slope)4.979 | 0.490 | <0.001 |
Th 2. | 372 | 4.960 | 1.00(slope)4.960 | 0.533 | <0.001 |
Th 3. | 123 | 3.807 | 1.10(slope)3.807 | 0.513 | <0.001 |
Th 4. | 332 | 3.028 | 2.31(slope)3.028 | 0.173 | <0.001 |
Multiple Regression | Forward/Backward Stepwise Regression | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AIC | VIF | Adj. R2 | CV R2 | p | AIC | VIF | Significant Variables | Adj. R2 | CV R2 | p | |
Det. | 1126.83 | 19 | 0.235 | 0.243 | <0.001 | 1121.31 | 1 | Slope, herb, tree, rock/bare soil | 0.237 | 0.273 | <0.001 |
Th 1. | 2546.52 | 11 | 0.503 | 0.519 | 0.001 | 2542.85 | 3 | Slope, herb, tree, NDVI-U, GRVI-U | 0.505 | 0.524 | <0.001 |
Th 2. | 2899.42 | 7 | 0.488 | 0.494 | 0.004 | 2895.55 | 4 | Slope, rock/bare soil, NDVI-U, GRVI-U | 0.490 | 0.499 | 0.004 |
Th 3. | 755.32 | 36 | 0.529 | 0.584 | 0.001 | 747.61 | 1 | Slope, shrub, NDVI-U | 0.543 | 0.574 | <0.001 |
Th 4. | 3136.14 | 11 | 0.249 | 0.259 | <0.001 | 3133.22 | 4 | Slope, tree, rock/bare soil, NDVI-U | 0.251 | 0.261 | <0.001 |
Sequence | Time Elapsed (HH:MM:SS) | Total Distance (m) | ROS (m min−1) | Elevation Gain (m) | Slope Trend (deg) | ROS/Slope (m min−1/deg−1) |
---|---|---|---|---|---|---|
Thomas 1 | 3:12:59 | 1884.52 | 9.76 | 670.78 | 19.54 | 0.5 |
Thomas 2 | 3:23:17 | 2387.74 | 11.74 | 444.72 | 10.53 | 1.11 |
Thomas 3 | 0:42:30 | 504.00 | 11.86 | 124.01 | 13.50 | 0.88 |
Thomas 4 | 0:49:04 | 2379.24 | 48.48 | 465.16 | 11.06 | 4.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schag, G.M.; Stow, D.A.; Riggan, P.J.; Tissell, R.G.; Coen, J.L. Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery. Fire 2021, 4, 6. https://doi.org/10.3390/fire4010006
Schag GM, Stow DA, Riggan PJ, Tissell RG, Coen JL. Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery. Fire. 2021; 4(1):6. https://doi.org/10.3390/fire4010006
Chicago/Turabian StyleSchag, Gavin M., Douglas A. Stow, Philip J. Riggan, Robert G. Tissell, and Janice L. Coen. 2021. "Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery" Fire 4, no. 1: 6. https://doi.org/10.3390/fire4010006
APA StyleSchag, G. M., Stow, D. A., Riggan, P. J., Tissell, R. G., & Coen, J. L. (2021). Examining Landscape-Scale Fuel and Terrain Controls of Wildfire Spread Rates Using Repetitive Airborne Thermal Infrared (ATIR) Imagery. Fire, 4(1), 6. https://doi.org/10.3390/fire4010006