Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Design
2.3. Arthropod Data
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Bond, W.J.; Keeley, J.E. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; Antonio, C.M.D.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Battlori, E.; Bennett, A.F.; Buckland, T.S.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Henle, K.; Davies, K.F.; Kleyer, M.; Margules, C.; Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 2004, 13, 207–251. [Google Scholar] [CrossRef]
- Zúñiga, A.H. Changes in the structure of assemblages of three Liolaemus lizards (Iguania, Liolaemidae) in a protected area of South-central Chile affected by a mixed-severity wildfire. Zoodiversity 2020, 54, 265–274. [Google Scholar] [CrossRef]
- Zúñiga, A.H.; Rau, J.R.; Jaksic, F.M.; Vergara, P.M.; Encina, F.; Fuentes-Ramírez, A. Rodent assemblage composition as indicator of fire severity in a protected area of south-central Chile. Austral. Ecol. 2021, 46, 249–260. [Google Scholar] [CrossRef]
- Caro, T.; O’Doherty, G. On the use of surrogate species in conservation biology. Conserv. Biol. 1999, 13, 805–814. [Google Scholar] [CrossRef]
- DellaSalla, D.A.; Hanson, C.T. The Ecological Importance of Mixed-Severity Fires; Elsevier: Amsterdam, The Netherlands, 2015; 450p. [Google Scholar]
- Moretti, M.; Orbist, M.K.; Duelli, P. Arthropods biodiversity after forest fires: Winers and losers in the winter regime fire in the southern Alps. Ecography 2004, 27, 173–186. [Google Scholar] [CrossRef]
- Elia, M.; Lafortezza, R.; Tarasco, E.; Colangelo, G.; Sanesi, G. The spatial and temporal effects of fire abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 2012, 263, 262–267. [Google Scholar] [CrossRef]
- Broza, M.; Izhaki, I.I. Post-fire arthropod assemblages in Mediterranean forest soils in Israel. Int. J. Wildland Fire 1997, 7, 317–325. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Persson, T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 2013, 57, 182–191. [Google Scholar] [CrossRef]
- Gutowski, J.M.; Sućko, K.; Borowski, J.; Kubosz, D.; Mazur, M.A.; Melke, A.; Mokrzycki, T.; Plewa, R.; Zmihorski, M. Post-fire beetle succession in a biodiversity hotspot: Bialowieza Primeval Forest. For. Ecol. Manag. 2020, 461, 117893. [Google Scholar] [CrossRef]
- Didham, R.K.; Ghazoul, J.; Stork, N.E.; Davis, A.J. Insects in fragmented forests: A functional approach. Trends Ecol. Evol. 1996, 11, 255–260. [Google Scholar] [CrossRef]
- Yekwayo, I.; Pryke, J.S.; Gaigher, R.; Samways, M.J. Only multi-taxon studies show the full range of arthropod response to fire. PLoS ONE 2018, 13, e0195414. [Google Scholar] [CrossRef] [Green Version]
- Lawes, M.J.; Kotze, D.J.; Bourquin, S.L. Epigaeic invertebrates as potencial indicators of Afromontane Forest condition in South Africa. Biotropica 2005, 37, 109–118. [Google Scholar] [CrossRef]
- Buddle, C.M.; Langor, D.W.; Pohl, G.R.; Spence, J.R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Conserv. 2006, 128, 346–357. [Google Scholar] [CrossRef]
- Uehara-Prado, M.; Bello, A.M.; Fernandes, J.; Santos, A.; Silva, I.A.; Cianciaruso, M.V. Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies. Zoologia 2019, 27, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.; Grez, A.A.; Vergara, P.M.; Ramírez-Hernández, A.; Micó, E. How does the replacement of native forest by exotic forest plantations affect the diversity, abundance and trophic structure of saproxylic beetle assemblages? For. Ecol. Manag. 2017, 405, 246–256. [Google Scholar] [CrossRef]
- McCullough, D.; Werner, R.A.; Neumann, D. Fire and Insects in Northern and Boreal Forest Ecosystems in North America. Annu. Rev. Entomol. 1998, 43, 107–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, D.M.J.S.; Williamson, G.J.; Prior, L.D.; Murphy, B.P. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R Soc. B 2016, 371, 27216526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasal, Y.; Raffaele, E.; Farji-Brener, A.G. Consequences of fire and cattle browsing on ground beetles (Coleoptera) in NW Patagonia. Ecol. Res. 2015, 30, 1015–1023. [Google Scholar] [CrossRef]
- Tello, F.; González, M.E.; Valdivia, N.; Torres, F.; Lara, A.; García-López, A. Diversity loss and changes in saproxylic beetle assemblages following a high-severity fire in Araucaria-Nothofagus forests. J. Insect Conserv. 2020, 24, 585–601. [Google Scholar] [CrossRef]
- Ferrenberg, S.M.; Schwilk, D.W.; Knapp, E.E.; Groth, E.; Keeley, J.E. Fire decreases arthropod abundance but increases diversity: Early and late season prescribed fire effects in a Sierra Nevada mixed-conifer forest. Fire Ecol. 2006, 2, 79–100. [Google Scholar] [CrossRef]
- Kwon, T.; Park, Y.K.; Lim, J.; Ryou, S.; Lee, C.M. Change of arthropod abundance in burned forests: Different patterns according to functional guilds. J. Asia Pac. Entomol. 2015, 16, 321–328. [Google Scholar] [CrossRef]
- González, M.E.; Muñoz, A.; González-Reyes, A.; Christie, D.A.; Sibold, J. Fire history in Araucaria-Nothofagus forests: Fire regimes in north-west Patagonia. Int. J. Wildland Fire 2020, 29, 649–660. [Google Scholar] [CrossRef]
- Moreno-González, R.; Giesescke, T.; Fontana, S.L. Fire and vegetation dynamics of endangered Araucaria araucana communities in the forest-steppe ecotone in northern Patagonia. Palaeogeogr. Paleoclimatol. Palaeoecol. 2021, 567, 110276. [Google Scholar] [CrossRef]
- Landesmann, J.; Gowda, J.; Garibaldi, L.; Kitzberger, T. Survival, growth and vulnerability to drought in fire regimes: Implications for the persistence of a fire-sensitive conifer in the North-Patagonia. Oecologia 2015, 179, 1111–1122. [Google Scholar] [CrossRef]
- Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gómez, M. Regímenes de incendios y respuestas de la vegetación en dos regiones de clima mediterráneo. Rev. Chil. Hist. Nat. 2004, 77, 455–464. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, P.; Farji-Brener, A. Effect of fire on ground beetles and ant assemblages along an environmental gradient in NW Argentina: Does habitat type matter? Ecoscience 2006, 13, 360–371. [Google Scholar] [CrossRef]
- Sasal, Y.; Raffaele, E.; Farji-Brener, A.G. Succession of ground-dwelling beetle assemblages after fire in three habitat types in the Andean forest of NW Patagonia, Argentina. J. Insect Sci. 2010, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, E.; Richardson, B.; Elgueta, M. The canopy beetle faunas of Gondwanan forest elements trees in Chilean temperate rain forests. J. Biogeogr. 2008, 35, 914–925. [Google Scholar] [CrossRef]
- Fuentes-Ramírez, A.; Salas-Eljatib, C.; González, M.E.; Urrutia-Estrada, J.; Arroyo-Vargas, P.; Santibáñez, P. Initial response of understory vegetation and tree regeneration to a mixed-severity in old-growth Araucaria-Nothofagus forests. Appl. Veg. Sci. 2020, 23, 210–222. [Google Scholar] [CrossRef]
- Corporación Nacional Forestal (CONAF). Plan de Manejo Forestal Reserva Nacional China Muerta; Technical Report. 90; Sistema Nacional de Áreas Protegidas del Estado, Santiago: Santiago, Chile, 2014. [Google Scholar]
- Luebert, F.; Pliscoff, P. Bioclimatic and Vegetational Synopsis in Chile; Editorial Universitaria: Santiago, Chile, 2018; p. 384. [Google Scholar]
- Wunderground. Lonquimay, Araucana, Chile Weather History 2021. Available online: https://www.wunderground.com/history/daily/cl/lonquimay/ILONQUIM2/date/2021-7-2 (accessed on 22 December 2021).
- Center for Information of Natural Resources (Ciren). Determination of the Current and Potential Soil and Erosion Risk in Chile; Technical Report; Ciren: Santiago, Chile, 2010; p. 292. [Google Scholar]
- Corporación Nacional Forestal (CONAF). Plan de Restauración Reserva Nacional China Muerta; CONAF, Temuco Technical Report; CONAF: Santiago, Chile, 2015; p. 38. [Google Scholar]
- Urrutia-Estrada, J.; Fuentes-Ramírez, A.; Hauenstein, E. Differences in floristic composition of Araucaria-Nothofagus forests affected by distinct fire severities. Gayana Bot. 2018, 75, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Vargas, P.; Fuentes-Ramírez, A.; Muys, B.; Pauchard, A. Impacts of fire severity and cattle grazing on early plant dynamics in old-growth Araucaria-Nothofagus forests. For. Ecosyst. 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Leather, S. Insect Sampling in Forest Ecosystems; Blackwell Publishing: Milton, VIC, Australia, 2005; p. 316. [Google Scholar]
- Waite, I.R.; Herlihy, A.T.; Larsen, D.P.; Scott Urquhart, N.; Klemm, D.J. The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: An example from the Mid-Atlantic Highlands, U.S.A. Freshw. Biol. 2004, 49, 474–489. [Google Scholar] [CrossRef]
- Bouget, C.; Brustel, H.; Nageleisen, L.-M. Nomenclature des groupes écologiques d’insectes liés au bois: Synthèse et mise au point sémantique. C. R. Biol. 2005, 328, 936–948. [Google Scholar] [CrossRef]
- Micó, E.; García-López, A.; Sánchez, A.; Juárez, M.; Galante, E. What can physical, biotic and chemical features of a tree tell us about their associated diversity? J. Insect Conserv. 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: An unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Jost, L. Entropy and diversity. Oikos 2008, 113, 363–375. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.C.; Kh, M.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Krebs, C.J. Ecological Methodology, 2nd ed.; Benjamin Cummings: Menlo Park, CL, USA, 1999; p. 620. [Google Scholar]
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples and completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.-H.; Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 297–324. [Google Scholar] [CrossRef] [Green Version]
- Hadfield, J.D. MCMC methods for multi-response generalized linear mixed models: The MCMC glmm R package. J. Stat. Soft. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Querner, P.; Bruckner, A. Combining pitfall traps and soil samples to collect Collembola for site scale biodiversity assessments. Appl. Soil Ecol. 2010, 45, 293–297. [Google Scholar] [CrossRef]
- New, T.R. Insects, Fire and Conservation; Springer: Cham, Switzerland, 2014; p. 208. [Google Scholar]
- Wikars, L. Dependence on fire in wood-living insects: An experiment with burned and unburned spruce and birch logs. J. Insect Conserv. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Vasconcelos, H.L.; Fleite, M.F.; Vilhena, J.M.; Lima, A.P.; Magnuson, W.E. Ant diversity in an Amazonian savanna: Relationship with vegetation structure, disturbance by fire, and dominant ant. Austral Ecol. 2008, 33, 221–231. [Google Scholar] [CrossRef]
- Vanderwel, M.C.; Malcolm, J.R.; Smith, S.M.; Islam, N. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. For. Ecol. Manag. 2006, 225, 190–199. [Google Scholar] [CrossRef]
- Monsimet, J.; Devineau, O.; Pétillon, J.; Lafague, D. Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci. Rep. 2020, 10, 16668. [Google Scholar] [CrossRef] [PubMed]
- Roig-Juñent, S. Las especies chilenas de Cnemalobus Guérin-Ménéville (Coleoptera: Carabidae: Cnemalobini). Rev. Chil. Entomol. 1994, 18, 7–18. [Google Scholar]
- Lövei, G.L.; Sunderland, K.D. Ecology and behavior of Ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 1996, 41, 231–256. [Google Scholar] [CrossRef] [PubMed]
- Mateos, E.; Santos, X.; Pujade-Villar, J. Taxonomic and functional responses to fire and post-fire management of a Mediterranean Hymenoptera community. Environ. Manag. 2011, 48, 1000. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Rochester, C.; Mitrovich, M.J. Effects of large-scale wildfires on ground foraging ants (Hymenoptera: Formicidae) in Southern California. Environ. Entomol. 2015, 40, 204–216. [Google Scholar] [CrossRef] [Green Version]
- McMullan-Fisher, S.J.M.; Way, T.W.; Robinson, R.; Bell, T.L.; Lebel, T.; Catcheside, P.; York, A. Fungi and fire in Australian ecosystems: A review of current knowledge, management implications and future indications. Aust. J. Bot. 2011, 59, 70–90. [Google Scholar] [CrossRef]
- Penttilä, R.; Kotiranta, H. Short-term effects of prescribed burning of wood-rotting fungi. Silva Fenn. 1996, 30, 399–419. [Google Scholar] [CrossRef] [Green Version]
- Anjos, D.; Alves-Silva, E.; Pontes, S. Do fire and seasonality affect the establishment and colonisation of litter arthropods? J. Insect Conserv. 2016, 30, 653–661. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zúñiga, A.H.; Rau, J.R.; Fierro, A.; Vergara, P.M.; Encina-Montoya, F.; Fuentes-Ramírez, A.; Jaksic, F.M. Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests. Fire 2022, 5, 168. https://doi.org/10.3390/fire5050168
Zúñiga AH, Rau JR, Fierro A, Vergara PM, Encina-Montoya F, Fuentes-Ramírez A, Jaksic FM. Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests. Fire. 2022; 5(5):168. https://doi.org/10.3390/fire5050168
Chicago/Turabian StyleZúñiga, Alfredo H., Jaime R. Rau, Andrés Fierro, Pablo M. Vergara, Francisco Encina-Montoya, Andrés Fuentes-Ramírez, and Fabian M. Jaksic. 2022. "Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests" Fire 5, no. 5: 168. https://doi.org/10.3390/fire5050168
APA StyleZúñiga, A. H., Rau, J. R., Fierro, A., Vergara, P. M., Encina-Montoya, F., Fuentes-Ramírez, A., & Jaksic, F. M. (2022). Fire Severity Causes Temporal Changes in Ground-Dwelling Arthropod Assemblages of Patagonian Araucaria–Nothofagus Forests. Fire, 5(5), 168. https://doi.org/10.3390/fire5050168