Fire Dynamics in an Emerging Deforestation Frontier in Southwestern Amazonia, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology Process
2.3. Data
2.3.1. Land Cover Map
- Intact vegetation: old growth tropical forest;
- Productive land: agricultural and pasture areas;
- Deforestation: change from natural vegetation to productive areas
- Regrowth: secondary forest [47].
2.3.2. Burned Area Map
2.3.3. Active Fires
2.3.4. Climatic Data
2.3.5. Land-Tenure Data
The Rural Environmental Registry (CAR)
- Small properties: rural property with an area of less than 4 fiscal modules;
- Medium properties: rural property with an area between 4 to 15 fiscal modules; and
- Large property: rural property with an area greater than 15 fiscal modules.
Deforestation Data
Undesignated Forest and Protect Areas
2.4. Raster Analysis
2.5. Statistical Analysis
2.6. Anomaly Calculation
3. Results
3.1. Relationships between Climatic Anomalies and the Extent of Burned Areas
3.2. Fire by Land-Use Type
3.3. Deforestation Fire
4. Discussion
4.1. Influence of Extreme Events on the Occurrence of Burned Area
4.2. Influence of Deforestation on the Advance of Fire into the Forest
4.3. Importance of Conservation Units and Indigenous Lands in Reducing Fire Occurrence
4.4. Limitations of This Study
4.5. Futures Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fearnside, P.M. Amazon Forest Maintenance as a Source of Environmental Services. Ann. Acad. Bras. Cienc. 2008, 80, 101–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, J.; Silveira, J.M.; Mestre, L.A.M.; Andrade, R.B.; Camacho D’Andrea, G.; Louzada, J.; Vaz-de-Mello, F.Z.; Numata, I.; Lacau, S.; Cochrane, M.A. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on above-Ground Biomass and Biodiversity. PLoS ONE 2012, 7, e33373. [Google Scholar] [CrossRef]
- Enright, N.J.; Fontaine, J.B.; Bowman, D.M.; Bradstock, R.A.; Williams, R.J. Interval Squeeze: Altered Fire Regimes and De-mographic Responses Interact to Threaten Woody Species Persistence as Climate Changes. Front. Ecol. Environ. 2015, 13, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, A.P.; Silva, C.V.J.; Barlow, J.; Rincón, L.M.; Campanharo, W.A.; Nunes, C.A.; De Almeida, C.T.; Silva Júnior, C.H.L.; Cassol, H.L.G.; Dalagnol, R.; et al. Drought-Driven Wildfire Impacts on Structure and Dynamics in a Wet Central Amazonian Forest. Proc. R. Soc. B Biol. Sci. 2021, 288, 20210094. [Google Scholar] [CrossRef]
- McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.; Adalsteinsson, S.A. Fire as a Fundamental Ecological Process: Research Advances and Frontiers. J. Ecol. 2020, 108, 2047–2069. [Google Scholar] [CrossRef]
- Leite Filho, A.T.; Soares Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation Reduces Rainfall and Agricultural Revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 2591. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva, C.H.L., Jr.; Arai, E.; Aguiar, A.P.; et al. 21st Century Drought-Related Fires Counteract the Decline of Amazon Deforestation Carbon Emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Barni, P.E.; Rego, A.C.M.; Silva, F.d.C.F.; Lopes, R.A.S.; Xaud, H.A.M.; Xaud, M.R.; Barbosa, R.I.; Fearnside, P.M. Logging Amazon Forest Increased the Severity and Spread of Fires during the 2015–2016 El Niño. For. Ecol. Manag. 2021, 500, 119652. [Google Scholar] [CrossRef]
- Pessôa, A.C.M.; Anderson, L.O.; Carvalho, N.S.; Campanharo, W.A.; Junior, C.H.L.S.; Rosan, T.M.; Reis, J.B.C.; Pereira, F.R.S.; Assis, M.; Jacon, A.D.; et al. Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sens. 2020, 12, 3864. [Google Scholar] [CrossRef]
- Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; Dos-Santos, M.N. Quantifying Long-Term Changes in Carbon Stocks and Forest Structure from Amazon Forest Degradation. Environ. Res. Lett. 2018, 13, 065013. [Google Scholar] [CrossRef]
- Silva, C.H.L., Jr.; Aragão, L.E.O.C.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Ziccardi, L.G.; Graça, P.M.L.A.; Figueiredo, E.O.; Fearnside, P.M. Decline of Large-Diameter Trees in a Bamboo-Dominated Forest Following Anthropogenic Disturbances in Southwestern Amazonia. Ann. For. Sci. 2019, 76, 110. [Google Scholar] [CrossRef]
- Anderson, L.O.; Aragão, L.E.O.C.; Gloor, M.; Arai, E.; Adami, M.; Saatchi, S.S.; Malhi, Y.; Shimabukuro, Y.E.; Barlow, J.; Berenguer, E.; et al. Disentangling the Contribution of Multiple Land Covers to Fire-Mediated Carbon Emissions in Amazonia during the 2010 Drought. Glob. Biogeochem. Cycles 2015, 29, 1739–1753. [Google Scholar] [CrossRef] [Green Version]
- De Mendonça, M.J.C.; Vera Diaz, M.d.C.; Nepstad, D.; Seroa da Motta, R.; Alencar, A.; Gomes, J.C.; Ortiz, R.A. The Economic Cost of the Use of Fire in the Amazon. Ecol. Econ. 2004, 49, 89–105. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Rajão, R.G.; Soares Filho, B.S.; Oliveira, U.; Santos, L.R.S.; Assunção, A.C.; Hoff, R.; Rodrigues, H.O.; Ribeiro, S.M.C.; Merry, F.; et al. Economic Losses to Sustainable Timber Production by Fire in the Brazilian Amazon. Geogr. J. 2019, 185, 55–67. [Google Scholar] [CrossRef]
- Campanharo, W.A.; Morello, T.; Christofoletti, M.A.M.; Anderson, L.O. Hospitalization Due to Fire-Induced Pollution in the Brazilian Legal Amazon from 2005 to 2018. Remote Sens. 2022, 14, 69. [Google Scholar] [CrossRef]
- Campanharo, W.A.; Lopes, A.P.; Anderson, L.O.; da Silva, T.F.M.R.; Aragão, L.E.O.C. Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sens. 2019, 11, 764. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.; Butry, D.; Gilbert, S.; Webb, D.; Fung, J. The Costs and Losses of Wildfires: A Literature Survey; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Morello, T.F.; Ramos, R.M.; Anderson, L.O.; Owen, N.; Rosan, T.M.; Steil, L. Predicting Fires for Policy Making: Improving Accuracy of Fire Brigade Allocation in the Brazilian Amazon. Ecol. Econ. 2020, 169, 106501. [Google Scholar] [CrossRef]
- Bush, M.; Silman, M.; McMichael, C.; Saatchi, S. Fire, Climate Change and Biodiversity in Amazonia: A Late-Holocene Perspective. Philos. Trans. R. Soc. B Biol. Sci 2008, 363, 1795–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barni, P.E.; Fearnside, P.M.; de Alencastro Graça, P.M.L. Simulating Deforestation and Carbon Loss in Amazonia: Impacts in Brazil’s Roraima State from Reconstructing Highway BR-319 (Manaus-Porto Velho). Environ. Manag. 2015, 55, 259–278. [Google Scholar] [CrossRef]
- Berenguer, E.; Lennox, G.D.; Ferreira, J.; Malhi, Y.; Aragão, L.E.O.C.; Barreto, J.R.; Del Bon Espírito-Santo, F.; Figueiredo, A.E.S.; França, F.; Gardner, T.A.; et al. Tracking the Impacts of El Niño Drought and Fire in Human-Modified Amazonian Forests. Proc. Natl. Acad. Sci. USA 2021, 118, e2019377118. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.G.; Anderson, L.O.; Arai, E.; Shimabukuro, Y.E.; Xaud, H.A.M.; Xaud, M.R.; Madani, N.; Wagner, F.H.; Aragão, L.E.O.C. Climatic and Anthropogenic Drivers of Northern Amazon Fires during the 2015-2016 El Niño Event. Ecol. Appl. 2017, 27, 2514–2527. [Google Scholar] [CrossRef] [PubMed]
- Turubanova, S.; Potapov, P.V.; Tyukavina, A.; Hansen, M.C. Ongoing Primary Forest Loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 2018, 13, 074028. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- LePage, Y.; van der Werf, G.R.; Morton, D.C.; Pereira, J.M. Modeling Fire-Driven Deforestation Potential in Amazonia under Current and Projected Climate Conditions. J. Geophys. Res. Biogeosci. 2010, 115, G03012. [Google Scholar]
- Burton, C.; Kelley, D.I.; Jones, C.D.; Betts, R.A.; Cardoso, M.; Anderson, L. South American Fires and Their Impacts on Ecosystems Increase with Continued Emissions. Clim. Resil. Sustain. 2022, 1, e8. [Google Scholar] [CrossRef]
- De Meira Junior, M.S.; Pinto, J.R.R.; Ramos, N.O.; Miguel, E.P.; Gaspar, R.d.O.; Phillips, O.L. The Impact of Long Dry Periods on the Aboveground Biomass in a Tropical Forest: 20 Years of Monitoring. Carbon Balance Manag. 2020, 15, 12. [Google Scholar] [CrossRef]
- Staver, A.C.; Brando, P.M.; Barlow, J.; Morton, D.C.; Paine, C.T.; Malhi, Y.; Murakami, A.A.; Pasquel, J.d.A. Thinner Bark Increases Sensitivity Of wetter Amazonian Tropical Forests to Fire. Ecol. Lett. 2020, 23, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, U.; Soares-filho, B.; Bustamante, M.; Gomes, L.; Ometto, J.P.; Rajão, R. Determinants of Fire Impact in the Brazilian Biomes. Front. For. Glob. Chang. 2022, 5, 735017. [Google Scholar] [CrossRef]
- Lopes, A.P.; Dalagnol, R.; Dutra, A.C.; Silva, C.V.S.; Graça, P.M.L.G.; de Oliveira e Cruz, L.E. Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sens. 2022, 14, 1545. [Google Scholar] [CrossRef]
- Silva, C.H.L., Jr.; Anderson, L.O.; Silva, A.L.; Almeida, C.T.; Dalagnol, R.; Pletsch, M.A.J.S.; Penha, T.V.; Paloschi, R.A.; Aragão, L.E.O.C. Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Front. Earth Sci. 2019, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A. Fire Science for Rainforests. Nature 2003, 421, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. Burning Story: The Role of Fire in the History of Life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.V.F.; Petri, C.A.; Broggio, I.S.; Chagas, G.O.; Macul, M.S.; Leite, C.C.S.S.; Ferrari, E.M.M.; Amim, C.G.V.; Freitas, A.L.R.; Motta, A.Z.V.; et al. Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Silva, C.H.L., Jr.; Aragão, L.E.O.C.; Anderson, L.O.; Fonseca, M.G.; Shimabukuro, Y.E.; Vancutsem, C.; Achard, F.; Beuchle, R.; Numata, I.; Silva, C.A.; et al. Persistent Collapse of Biomass in Amazonian Forest Edges Following Deforestation Leads to Unaccounted Carbon Losses. Sci. Adv. 2020, 6, eaaz8360. [Google Scholar] [CrossRef] [PubMed]
- Vedovato, L.B.; Fonseca, M.G.; Arai, E.; Anderson, L.O.; Aragão, L.E.O.C. The Extent of 2014 Forest Fragmentation in the Brazilian Amazon. Reg. Environ. Chang. 2016, 16, 2485–2490. [Google Scholar] [CrossRef]
- Carvalho, N.S.; Anderson, L.O.; Nunes, C.A.; Pessôa, A.C.M.; Silva, C.H.L., Jr.; REIS, J.B.C.; Shimabukuro, Y.E.; Berenguer, E.; Barlow, J.; Aragao, L.E.O.C. Spatio-Temporal Variation in Dry Season Determines the Amazonian Fire Calendar. Environ. Res. Lett. 2021, 16, 125009. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Barbier, N.; Lima, A.; Shimabukuro, Y.; Anderson, L.; Saatchi, S. Interactions between Rainfall, Deforestation and Fires during Recent Years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 1779–1785. [Google Scholar] [CrossRef]
- DNIT—Departamento Nacional de Infraestrutura de Transportes. Rodovias Georreferenciadas Que Compõem o Subsistema Rodoviário Federal Do Sistema Federal de Viação (SFV) Do Brasil. Available online: https://inde.gov.br/ (accessed on 12 June 2021).
- Barni, P.E.; Pereira, V.B.; Manzi, A.O.; Barbosa, R.I. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon. Environ. Manag. 2015, 55, 1124–1138. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P.W.M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- MAPBIOMAS. Projeto Mapbiomas. Available online: https://mapbiomas.org (accessed on 30 June 2021).
- Silva, C.H.L., Jr.; Heinrich, V.H.A.; Freire, A.T.G.; Broggio, I.S.; Rosan, T.M.; Doblas, J.; Anderson, L.O.; Rousseau, G.X.; Shimabukuro, Y.E.; Silva, C.A.; et al. Benchmark Maps of 33 Years of Secondary Forest Age for Brazil. Sci. Data 2020, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boschetti, L.; Sparks, A.; Roy, D.; Giglio, L.; San-Miguel-Ayanz, J. GWIS National and Sub-National Fire Activity Data from the NASA MODIS Collection 6 Burned Area Product in Support of Policy Making, Carbon Inventories and Natural Resource Management. Available online: https://gwis.jrc.ec.europa.eu/apps/country.profile/downloads (accessed on 6 June 2021).
- Dutra, D.J.; Oighenstein, L.A.; Fearnside, P.M.; Yanai, A.M.; Graça, P.M.L.A.; da Silva, R.D.; Pessôa, A.C.D.M.; de Aragão, L.E.O.E.C. Comparison of Regional Scale Burned Area Products for Southwestern Brazilian Amazonia. In Proceedings of the GEOINFO 2022, XXIII Brazilian Symposium on Geoinformatics, São José dos Campos, SP, Brazil, 28–30 November 2022; p. 12. [Google Scholar]
- INPE. Queimadas. Available online: https://queimadas.dgi.inpe.br/queimadas/portal/informacoes/apresentacao (accessed on 30 June 2021).
- Copernicus-Climate-Change-Service ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 1 January 2022).
- Von Randow, C.; Zeri, M.; Restrepo-Coupe, N.; Muza, M.N.; de Gonçalves, L.G.G.; Costa, M.H.; Araujo, A.C.; Manzi, A.O.; da Rocha, H.R.; Saleska, S.R.; et al. Inter-Annual Variability of Carbon and Water Fluxes in Amazonian Forest, Cerrado and Pasture Sites, as Simulated by Terrestrial Biosphere Models. Agric. For. Meteorol. 2013, 182–183, 145–155. [Google Scholar] [CrossRef]
- Da Rocha, H.R.; Goulden, M.L.; Miller, S.D.; Menton, M.C.; Pinto, L.D.V.O.; De Freitas, H.C.; E Silva Figueira, A.M. Seasonality of Water and Heat Fluxes over a Tropical Forest in Eastern Amazonia. Ecol. Appl. 2004, 14, 22–32. [Google Scholar] [CrossRef]
- Serviço Flroestal Brasileiro SEB. Módulo de Cadastro—Manual Do Usuário; Ministério do Meio Ambiente: Brasília, Brazil, 2016.
- De Freitas, F.L.M.; Guidotti, V.; Sparovek, G.; Hamamura, C. Nota Técnica: Malha Fundiária Do Brasil. In Atlas—A Geografia da Agropecuária Brasileira; IMAFLORA: Piracicaba, Brazil, 2018; Volume 1812, p. 5. [Google Scholar]
- Carvalho, N.S.; Anderson, L.O.; Pessôa, A.C.M.; Silva, C.H.L., Jr.; Reis, J.B.C.; Aragão, L.E.O.C.; Barlow, J. Assessing the Distribution and Overlap of Public and Private Lands in the Brazilian Amazon. Remote Sens. 2022. submitted. [Google Scholar]
- INCRA Classificação Dos Imóveis Rurais. Available online: www.antigo.incra.gov.br/obtencao-de-terras (accessed on 5 January 2022).
- Assis, L.F.F.G.; Ferreira, K.R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- Serviço-Florestal-Brasileiro Florestas Não Destinadas. Available online: http://www.florestal.gov.br/cadastro-nacional-de-florestas-publicas/127-informacoes-florestais/cadastro-nacional-de-florestas-publicas-cnfp/1413-cadastro-nacional-de-florestas-publicas-atualizacao-2020 (accessed on 3 February 2021).
- FUNAI. Terras Indigenas. Available online: http://geoserver.funai.gov.br/geoserver/web/ (accessed on 3 February 2021).
- MMA. Unidades de Conservação. Available online: http://mapas.mma.gov.br/i3geo/datadownload.htm (accessed on 3 February 2021).
- Soares Filho, B.; Alencar, A.; Nepstad, D.; Cerqueira, G.; Del Carmen Vera Diaz, M.; Rivero, S.; Solórzano, L.; Voll, E. Simulating the Response of Land-Cover Changes to Road Paving and Governance along a Major Amazon Highway: The Santarém-Cuiabá Corridor. Glob. Chang. Biol. 2004, 10, 745–764. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org/ (accessed on 30 June 2021).
- Qgis. QGIS Geographic Information System. Available online: https://qgis.org/pt_BR/site/ (accessed on 6 June 2021).
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379. [Google Scholar] [CrossRef]
- Silva, C.H.L., Jr.; Buna, A.T.M.; Bezerra, D.S.; Costa, O.S.; Santos, A.L.; Basson, L.O.D.; Santos, A.L.S.; Alvarado, S.T.; Almeida, C.T.; Freire, A.T.G.; et al. Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire 2022, 5, 77. [Google Scholar] [CrossRef]
- Package ‘Wql’. Available online: https://cran.r-project.org/web/packages/wql/wql.pdf (accessed on 8 May 2022).
- Package “Kandall”. Available online: https://cran.r-project.org/web/packages/Kendall/Kendall.pdf (accessed on 8 May 2022).
- Bombardi, R.J.; de Carvalho, L.M.V. Práticas Simples Em Análises Climatológicas: Uma Revisão. Rev. Bras. Meteorol. 2017, 32, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.O.; Neto, G.R.; Cunha, A.P.; Fonseca, M.G.; De Moura, Y.M.; Dalagnol, R.; Wagner, F.H.; De Aragão, L.E.O.E.C. Vulnerability of Amazonian Forests to Repeated Droughts. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170411. [Google Scholar] [CrossRef]
- De Andrade, D.F.C.; Ruschel, A.R.; Schwartz, G.; de Carvalho, J.O.P.; Humphries, S.; Gama, J.R.V. Forest Resilience to Fire in Eastern Amazon Depends on the Intensity of Pre-Fire Disturbance. For. Ecol. Manag. 2020, 472, 118258. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef]
- De Faria, B.L.; Brando, P.M.; Macedo, M.N.; Panday, P.K.; Soares-Filho, B.S.; Coe, M.T. Current and Future Patterns of Fire-Induced Forest Degradation in Amazonia. Environ. Res. Lett. 2017, 12, 095005. [Google Scholar] [CrossRef]
- Silveira, M.V.F.; Silva, C.H.L., Jr.; Anderson, L.O.; Aragão, L.E.O.C. Amazon Fires in the 21st Century: The Year of 2020 in Evidence. Glob. Ecol. Biogeogr. 2022, 31, 2026–2040. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Silva, C.H.L., Jr.; Anderson, L.O. O Desafio Do Brasil Para Conter o Desmatamento e as Queimadas Na Amazônia Durante a Pandemia Por COVID-19. In Implicações Ambientais, Sociais e Sua Governança; Technical Report; National Institute for Space Research: São José dos Campos, Brazil, 2020. [Google Scholar] [CrossRef]
- Aragão, L.E.O.C.; Malhi, Y.; Roman-Cuesta, R.M.; Saatchi, S.; Anderson, L.O.; Shimabukuro, Y.E. Spatial Patterns and Fire Response of Recent Amazonian Droughts. Geophys. Res. Lett. 2007, 34, L07701. [Google Scholar] [CrossRef]
- Burton, C.; Betts, R.A.; Jones, C.D.; Feldpausch, T.R.; Cardoso, M.; Anderson, L.O. El Niño Driven Changes in Global Fire 2015/16. Front. Earth Sci. 2020, 8, 199. [Google Scholar] [CrossRef]
- Ray, D.; Nepstad, D.; Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 2005, 15, 1664–1678. [Google Scholar] [CrossRef]
- Barnard, P.L.; Hoover, D.; Hubbard, D.M.; Snyder, A.; Ludka, B.C.; Allan, J.; Kaminsky, G.M.; Ruggiero, P.; Gallien, T.W.; Gabel, L.; et al. Extreme Oceanographic Forcing and Coastal Response Due to the 2015–2016 El Niño. Nat. Commun. 2017, 8, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barni, P.; Barbosa, R.I.; Manzi, A.O.; Fearnside, P.M. Simulated Deforestation versus Satellite Data in Roraima, Northern Amazonia, Brazil. Sustentabilidade Debate 2020, 11, 81–94. [Google Scholar] [CrossRef]
- Nogueira, J.M.P.; Rambal, S.; Barbosa, J.P.R.A.D.; Mouillot, F. Spatial Pattern of the Seasonal Drought/Burned Area Rela-tionship across Brazilian Biomes: Sensitivity to Drought Metrics and Global Remote-Sensing Fire Products. Climate 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Stott, P. Combustion in Tropical Biomass Fires: A Critical Review. Prog. Phys. Geogr. 2000, 24, 355–377. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Lefebvre, P.A.; Silva, U.L.; Junior, T.J.; Schlesinger, P.; Solorzano, L.; Moutinho, P.R.S.; Ray, D.G. Amazon Drought and Its Implications for Forest Flammability and Tree Growth: A Basin-Wide Analysis. Glob. Change Biol. 2004, 10, 704–717. [Google Scholar] [CrossRef]
- Hoffmann, T.B.; Dutra, A.C.; Shimabukuro, Y.E.; Arai, E.; Godinho Cassol, H.L.; Di Girolamo Neto, C.; Duarte, V. Fire Oc-currence in the Brazilian Savanna Conservation Units and Their Buffer Zones. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4263–4266. [Google Scholar]
- Ferrante, L.; Fearnside, P.M. Brazil’s Political Upset Threatens Amazonia. Science 2021, 371, 898. [Google Scholar] [CrossRef]
- Ferrante, L.; Fearnside, P.M. Military Forces and COVID-19 as Smokescreens for Amazon Destruction and Violation of In-digenous Rights. Die Erde 2020, 151, 258–263. [Google Scholar] [CrossRef]
- Brasil Lei No 12.651, de 25 de Maio de 2012; Brasília, DOU de 28.5.2012. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 14 February 2022).
- Ferrante, L.; Fearnside, P.M. The Amazon’s Road to Deforestation. Science 2020, 369, 634. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, L.; Andrade, M.B.T.; Fearnside, P.M. Land Grabbing on Brazil’s Highway BR-319 as a Spearhead for Amazonian Deforestation. Land Use Policy 2021, 108, 3. [Google Scholar] [CrossRef]
- Ferrante, L.; Fearnside, P.M. Brazil Threatens Indigenous Lands. Science 2020, 368, 481–482. [Google Scholar] [CrossRef]
- MAPA; INCRA. Portaria Conjunta No 1, de 2 de Dezembro de 2020. Available online: https://bityl.co/4o8G (accessed on 14 February 2022).
- Ferrante, L.; Fearnside, P.M. Brazil’s New President and “ruralists” Threaten Amazonia’s Environment, Traditional Peoples and the Global Climate. Environ. Conserv. 2019, 46, 14–16. [Google Scholar] [CrossRef]
- HRW. Rainforest Mafias: How Violence and Impunity Fuel Deforestation in Brazil’s Amazon; Human Rights Watch (HRW): New York, NY, USA, 2019. [Google Scholar]
- Mataveli, G.A.V.; Chaves, M.E.D.; Brunsell, N.A.; Aragão, L.E.O.C. The Emergence of a New Deforestation Hotspot in Amazonia. Perspect. Ecol. Conserv. 2021, 19, 33–36. [Google Scholar] [CrossRef]
- Salomão, C.S.C.; Stabile, M.C.C.; Souza, L.; Alencar, A.; Castro, I.; Moutinho, P.; Guyota, C. Nota Técnica n. 8. Amazônia Em Chamas: Desmatamento, Fogo e Pecuária Em Terras Públicas; IPAM: Manaus, Brazil, 2021. [Google Scholar]
- SIOP Sistema de Integrado de Planejamento Ee Orçamento. Available online: http://www1.siop.planejamento.gov.br/acessopublico/?pp=acessopublico&rvn=1 (accessed on 14 February 2022).
- ICMBio. Plano de Manejo Floresta Nacional Do Purus; Ministerio do Meio Ambiente: Boca do Acre, Brazil, 2009; Volume 1, p. 107.
- ICMBio. Plano de Manejo Participativo Da Reserva Extrativista Arapixi; Ministerio do Meio Ambiente—MMA: Boca do Acre, Brazil, 2010.
- ICMBio. Plano de Manejo Floresta Nacional Mapiá-Inauini; Ministerio do Meio Ambiente: Boca do Acre, Brazil, 2009; Volume 1, p. 109.
- Brasil Lei Nº 9985, de 18 de Julho de 2000; Brazil. 2000; pp. 1–16. Available online: https://www.planalto.gov.br/ccivil_03/leis/l9985.htm (accessed on 14 February 2022).
- Alcasena, F.; Ager, A.; Le Page, Y.; Bessa, P.; Loureiro, C.; Oliveira, T. Assessing Wildfire Exposure to Communities and Pro-tected Areas in Portugal. Fire 2021, 4, 82. [Google Scholar] [CrossRef]
- Fearnside, P.M. Conservation Policy in Brazilian Amazonia: Understanding the Dilemmas. World Dev. 2003, 31, 757–779. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Brown, F.I.; Schroeder, W.; Setzer, A.; de Los Rios, M.M.; Pantoja, N.; Duarte, A.; Marengo, J. Monitoring Fires in Southwestern Amazonia Rain Forests. Eos 2006, 87, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Alencar, A.A.C.; Arruda, V.L.S.; Vieira, W.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Fran-ca-rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Arruda, V.L.S.; Piontekowski, V.J.; Alencar, A.; Pereira, R.S.; Matricardi, E.A.T. An Alternative Approach for Mapping Burn Scars Using Landsat Imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sens. Appl. Soc. Environ. 2021, 22, 100472. [Google Scholar] [CrossRef]
- Justice, C.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS Fire Products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Nagol, J.; Souza, C.M.; Kasischke, E.S.; Hurtt, G.C.; Dubayah, R. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data. Remote Sens. Environ. 2011, 115, 1706–1720. [Google Scholar] [CrossRef] [Green Version]
- Bolaño-Díaz, S.; Camargo-Caicedo, Y.; Soro, T.D.; N’Dri, A.B.; Bolaño-Ortiz, T.R. Spatio-Temporal Characterization of Fire Using MODIS Data (2000–2020) in Colombia. Fire 2022, 5, 134. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.; Freeborn, P.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite Remote Sensing of Active Fires: History and Current Status, Applications and Future Requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Morisette, J.T.; Giglio, L.; Csiszar, I.; Setzer, A.; Schroeder, W.; Morton, D.; Justice, C.O. Validation of MODIS Active Fire Detection Products Derived from Two Algorithms. Earth Interact. 2005, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Burton, C.; Betts, R.; Cardoso, M.; Feldpausch, R.T.; Harper, A.; Jones, C.D.; Kelley, D.I.; Robertson, E.; Wiltshire, A. Repre-sentation of Fire, Land-Use Change and Vegetation Dynamics in the Joint UK Land Environment Simulator Vn4.9 (JULES). Geosci. Model Dev. 2019, 12, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Mataveli, G.; de Oliveira, G.; Chaves, M.E.D.; Dalagnol, R.; Wagner, F.H.; Ipia, A.H.S.; Silva-Junior, C.H.L.; Aragão, L.E.O.C. Science-based Planning Can Support Law Enforcement Actions to Curb Deforestation in the Brazilian Amazon. Conserv. Lett. 2022, 00, e12908. [Google Scholar] [CrossRef]
- Kay, G.; Dunstone, N.J.; Smith, D.M.; Betts, R.A.; Cunningham, C.; Scaife, A.A. Assessing the Chance of Unprecedented Dry Conditions over North Brazil during El Niño Events. Environ. Res. Lett. 2022, 17, 064016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutra, D.J.; Anderson, L.O.; Fearnside, P.M.; Graça, P.M.L.d.A.; Yanai, A.M.; Dalagnol, R.; Burton, C.; Jones, C.; Betts, R.; Aragão, L.E.O.e.C.d. Fire Dynamics in an Emerging Deforestation Frontier in Southwestern Amazonia, Brazil. Fire 2023, 6, 2. https://doi.org/10.3390/fire6010002
Dutra DJ, Anderson LO, Fearnside PM, Graça PMLdA, Yanai AM, Dalagnol R, Burton C, Jones C, Betts R, Aragão LEOeCd. Fire Dynamics in an Emerging Deforestation Frontier in Southwestern Amazonia, Brazil. Fire. 2023; 6(1):2. https://doi.org/10.3390/fire6010002
Chicago/Turabian StyleDutra, Débora Joana, Liana Oighenstein Anderson, Philip Martin Fearnside, Paulo Maurício Lima de Alencastro Graça, Aurora Miho Yanai, Ricardo Dalagnol, Chantelle Burton, Christopher Jones, Richard Betts, and Luiz Eduardo Oliveira e Cruz de Aragão. 2023. "Fire Dynamics in an Emerging Deforestation Frontier in Southwestern Amazonia, Brazil" Fire 6, no. 1: 2. https://doi.org/10.3390/fire6010002
APA StyleDutra, D. J., Anderson, L. O., Fearnside, P. M., Graça, P. M. L. d. A., Yanai, A. M., Dalagnol, R., Burton, C., Jones, C., Betts, R., & Aragão, L. E. O. e. C. d. (2023). Fire Dynamics in an Emerging Deforestation Frontier in Southwestern Amazonia, Brazil. Fire, 6(1), 2. https://doi.org/10.3390/fire6010002