Quantifying Litter Bed Ignitability: Comparison of a Laboratory and Field Method
Abstract
:1. Introduction
- How similar are the laboratory and field results?
- What factors influence the similarity between the laboratory and field results?
2. Materials and Methods
2.1. Study Area and Sites
2.2. Field Ignition Tests
2.3. Litter Collection
2.4. Laboratory Ignition Tests
2.5. Data Analysis
3. Results
3.1. Summary of Ignition Results, Fuel Moisture and Weather Conditions over the Study Duration
3.2. Similarity between the Laboratory and the Field
3.3. Influence of Fuel and Weather Variables on the Similarity between the Laboratory and the Field
4. Discussion
4.1. Litter Bed Sampling Approach
4.2. Similarity between the Laboratory and the Field
4.3. Implications and Next Steps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Field or Laboratory | Author; Location | Purpose of Study | Ignition Source | Definition of Successful Ignition |
---|---|---|---|---|
Field | [28]; eucalypt forest in Victoria | Evaluate different in-forest and landscape variables as predictors of ignitability | Cotton cylinder and sawdust–wax firelighter | (1) Fuel ignited and burnt independently of ignition source (2) Flaming sustained 0.5 m from the point of ignition or 5 min |
Field | [23]; eucalypt forest in Victoria | Identify drivers of ignitability during a prescribed burn | Drip torch lit in strips to create backing fire | Flaming self-sustains beyond the point of ignition |
Field | [53]; heathland, UK | Quantify the variation in fire sustainability | Drip torch (3 × spots followed by 2 m strip) | Fire spreads 2 m in less than 5 min |
Field | [22]; grassland, Greece | Develop a model to predict ignition probability | Drip torch (10 m strips); five ignition trials per test | Flaming sustained for >1 min in 5 consecutive ignition trials |
Field | [54]; Australian alps | Quantify flammability of alpine vegetation | Kerosene fire lighting blocks | Flaming sustained > 5 s |
Field | [55]; Tasmanian grasslands | Identify thresholds for fire spread in grasslands | Drip torch (2 m strip) | Fire spread 2 m and visual descriptors |
Field | [21]; gorse stands, New Zealand | Identify thresholds for ignition and fire spread in gorse stands | Alternated between use of a drip torch and a standard cigarette lighter, fuel ignited at height of 0.5 m | Fire spread to top of gorse clump and burned clump completely |
Laboratory | [10]; dry eucalypt litter in laboratory | Measure the probability of ignition | Flaming firebrands were 50 mm bamboo satay sticks; glowing firebrands were 50 × 15 mm E. globulus bark pieces | Flaming sustained for 60 s |
Laboratory | [12]; pine needle litter bed | Quantify the effect of firebrand size and wind speed on litter ignition | Pine bark of various sizes; ignition attempted first with single firebrand, then up to 10 firebrands together | Flaming—visible flaming of needles within fuel bed Smouldering—smouldering of fuel bed |
Laboratory | [51]; pine needle litter bed | Quantify the effect of firebrand size and type, fuel bulk density and wind speed on time to flaming ignition | Pine bark and twigs of various sizes; fuel bed was exposed to a single firebrand | Flaming—visible flaming of needles within fuel bed |
Laboratory | [1]; litter beds of European species | Quantify flammability of different litter beds | Cubes of Pinus sylvestris wood ignited using an electric radiator | Time to ignition |
Laboratory | [14]; litter beds of shrub fuel | Identify factors influencing ignition in the litter bed of shrublands | Cotton balls soaked in 1 mL methylated spirits (to emulate aerial incendiary) | Fire spread 12.5 cm to edge of fuel tray from ignition point |
Site No. | Site | Lat, Long | Canopy Cover (%) | Litter-Bed Depth (mm) | Dominant Overstorey Species |
---|---|---|---|---|---|
1 | Beenak | −37.8712, 145.6708 | 71 (4) | 36 (11) | Eucalyptus obliqua L’Hér, E. regnans F.Muell. |
2 | Fifth Dam | −37.8766, 145.6805 | 65 (2) | 42 (21) | E. obliqua |
3 | Worlleys | −37.8950, 145.7281 | 67 (4) | 30 (12) | E. regnans |
4 | Bertha | −37.8586, 145.7562 | 66 (4) | 62 (4) | E. cypellocarpa L.A.S.Johnson, E. sieberi L.A.S.Johnson, E. obliqua |
5 | Turners | −37.8781, 145.7770 | 62 (8) | 33 (17) | E. regnans |
6 | Big Creek | −37.8705, 145.8044 | 66 (6) | 27 (9) | E. regnans |
Site | Date | Successful Ignitions | Sustained Ignitions | Surface Litter FMC a | Near-Surface FMC a | Mean Litter Bed Cover (%) | Mean Near-Surface Cover (%) | Mean Litter Bed Depth (mm) | Max Wind Speed (km h−1) b | Min RH (%) b | Max Temp (°C) b | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lab | Field | Lab | Field | ||||||||||
Beenak | 17 December 2019 | 0.60 | 0.80 | 0 | 0.17 | 21.7 | 20.1 | 95 | 11 | 38 | 2.4 | 40.1 | 26.1 |
30 January 2020 | 0.80 | 1 | 0.40 | 0.73 | 16.6 | 13.9 | 99 | 43 | 27 | 2.1 | 21.1 | 35.2 | |
18 November 2020 | 0.80 | 0.70 | 0.20 | 0.47 | 17.2 | 17.4 | 88 | 13 | 25 | 1.7 | 24.7 | 25.2 | |
14 December 2020 | 1 | 0.80 | 0.40 | 0.43 | 20.2 | 17.1 | 99 | 26 | 51 | 1.4 | 31.9 | 30.6 | |
16 February 2021 | 0.20 | 0.30 | 0 | 0 | 26.8 | 19.9 | 95 | 16 | 41 | 0.9 | 65.1 | 26.5 | |
30 March 2021 | 0 | 0 | 0 | 0 | 99.4 | 23.9 | 96 | 9 | 28 | 2.2 | 72.6 | 23.5 | |
Bertha | 17 December 2019 | 0 | 0.43 | 0 | 0.10 | 25.1 | 21.7 | 100 | 30 | 39 | 3.6 | 36.3 | 26.3 |
18 March 2020 | 0.40 | 0.33 | 0 | 0 | 20.8 | 17.1 | 100 | 9 | 32 | 2.3 | 24.1 | 34.2 | |
11 December 2020 | 0.20 | 0.23 | 0 | 0 | 35.6 | 31.1 | 100 | 17 | 32 | 4.9 | 45.2 | 20.9 | |
15 December 2020 | 0.80 | 0.90 | 0 | 0.27 | 17.7 | 14.7 | 95 | 19 | 38 | 2.7 | 29.9 | 32.9 | |
16 February 2021 | 0.40 | 0.43 | 0 | 0.07 | 23.8 | 20.8 | 99 | 3 | 56 | 2.4 | 61.8 | 24.2 | |
30 March 2021 | 0 | 0 | 0 | 0 | 190.2 | 75.5 | 97 | 2 | 55 | 2.5 | 95.0 | 14.0 | |
Big Creek | 19 December 2019 | 0 | 0.37 | 0 | 0.03 | 28.5 | 21.9 | 78 | 36 | 29 | 1.5 | 42.4 | 29.7 |
18 March 2020 | 0 | 0.06 | 0 | 0 | 73.0 | 33.5 | 81 | 9 | 19 | NA | 33.5 | 31.5 | |
11 December 2020 | 0 | 0.30 | 0 | 0.03 | 67.7 | 20.3 | 93 | 30 | 24 | 1.5 | 82.2 | 20.1 | |
15 December 2020 | 0.60 | 0.60 | 0.40 | 0.13 | 16.9 | 15.9 | 84 | 31 | 25 | 2.1 | 33.7 | 31.2 | |
16 February 2021 | 0 | 0.10 | 0 | 0 | 53.6 | 31.0 | 85 | 7 | 23 | NA | 73.0 | 24.1 | |
31 March 2021 | 0 | 0 | 0 | 0 | 257.3 | 56.2 | 79 | 3 | 21 | NA | 100.0 | 14.1 | |
Fifth Dam | 17 December 2019 | 0.60 | 0.47 | 0 | 0.03 | 18.6 | 18.5 | 91 | 26 | 38 | 3.1 | 35.9 | 28.6 |
30 January 2020 | 0.60 | 0.90 | 0.20 | 0.30 | 12.8 | 12.7 | 97 | 13 | 35 | 3.6 | 20.6 | 33.1 | |
18 November 2020 | 0.60 | 0.70 | 0.20 | 0.37 | 17.7 | 14.7 | 74 | 14 | 26 | 2.6 | 29.7 | 26.1 | |
14 December 2020 | 0.80 | 0.90 | 0 | 0.77 | 18.1 | 14.0 | 99 | 56 | 40 | 2.1 | 32.8 | 31.2 | |
17 February 2021 | 0.80 | 0.67 | 0 | 0.23 | 18.2 | 18.3 | 100 | 14 | 87 | 2.1 | 51.4 | 27.4 | |
30 March 2021 | 0 | 0.03 | 0 | 0 | 110.8 | 54.3 | 93 | 7 | 24 | 1.5 | 79.5 | 14.6 | |
Turners | 19 December 2019 | 0.60 | 0.83 | 0 | 0.33 | 14.3 | 11.7 | 97 | 49 | 27 | 1.9 | 34.8 | 32.0 |
30 January 2020 | 0.60 | 0.77 | 0.40 | 0.27 | 16.1 | 12.6 | 99 | 31 | 27 | 1.9 | 26.6 | 37.6 | |
18 March 2020 | 0.60 | 0.73 | 0 | 0.10 | 24.1 | 18.5 | 99 | 29 | 30 | 1.3 | 46.5 | 31.0 | |
11 December 2020 | 0.40 | 0.33 | 0 | 0.00 | 17.6 | 15.9 | 99 | 17 | 35 | 5.9 | 47.6 | 24.8 | |
15 December 2020 | 1 | 0.87 | 0.40 | 0.60 | 12.4 | 14.0 | 98 | 35 | 31 | 2.8 | 27.6 | 36.4 | |
17 February 2021 | 0.60 | 0.57 | 0 | 0.10 | 27.8 | 16.4 | 100 | 22 | 39 | 2.7 | 37.0 | 38.4 | |
31 March 2021 | 0 | 0 | 0 | 0 | 102.5 | 47.2 | 97 | 24 | 37 | 1.6 | 85.3 | 19.1 | |
Worlleys | 19 December 2019 | 0.20 | 0.53 | 0.20 | 0 | 20.1 | 15.9 | 69 | 7 | 30 | 3.6 | 32.6 | 25.1 |
30 January 2020 | 0.60 | 0.47 | 0 | 0.13 | 13.3 | 14.6 | 97 | 46 | 34 | 1.2 | 20.7 | 32.4 | |
18 November 2020 | 0.80 | 0.50 | 0.20 | 0.03 | 14.4 | 16.3 | 76 | 5 | 30 | NA | 30.0 | 23.1 | |
14 December 2020 | 0.80 | 0.80 | 0 | 0.17 | 18.9 | 17.6 | 96 | 27 | 32 | NA | 38.6 | 29.3 | |
17 February 2021 | 0.20 | 0.20 | 0 | 0 | 40.3 | 32.4 | 93 | 26 | 45 | NA | 70.5 | 23.3 | |
31 March 2021 | 0 | 0 | 0 | 0 | 141.3 | 99.3 | 93 | 30 | 37 | NA | 98.2 | 16.9 |
Appendix B. Comparing Combustion Dynamics of Cotton Cylinder to Stringybark Firebrand
Firebrand | Shape and Dimensions | Weight (g) | Area (cm2) | Volume (cm3) |
---|---|---|---|---|
Cotton Cylinder | Cylinder 3.5 cm long × 1 cm wide | 0.43 (± 0.05) | 12.6 | 2.75 |
Stringybark (Eucalyptus obliqua) | Rectangle 3.5 cm long × 1 cm wide × 0.4 cm deep | 0.41 (± 0.03) | 10.6 | 1.4 |
References
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Perez-Gorostiaga, P.; Vega, J.A. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel beds. Int. J. Wildland Fire 2009, 18, 951–969. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.L.; McCaw, L.; Cruz, M.G.; Matthews, S.; Ellis, P.F. Fuel, fire weather and fire behaviour in australian ecosystems. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock, R., Gill, A.M., Williams, R.J., Eds.; CSIRO Publishing: Melbourne, VIC, Australia, 2012. [Google Scholar]
- Filkov, A.I.; Duff, T.J.; Penman, T.D. Frequency of dynamic fire behaviours in australian forest environments. Fire 2019, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-H. Analysis on downwind distribution of firebrands sourced from a wildland fire. Fire Technol. 2009, 47, 321–340. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef] [Green Version]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The flammability of forest and woodland litter: A synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Ganteaume, A.; Guijarro, M.; Jappiot, M.; Hernando, C.; Lampin-Maillet, C.; Pérez-Gorostiaga, P.; Vega, J.A. Laboratory characterization of firebrands involved in spot fires. Ann. For. Sci. 2011, 68, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Fateev, V.; Agafontsev, M.; Volkov, S.; Filkov, A. Determination of smoldering time and thermal characteristics of firebrands under laboratory conditions. Fire Saf. J. 2017, 91, 791–799. [Google Scholar] [CrossRef]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. Ignition of mulch and grasses by firebrands in wildland—Urban interface fires. Int. J. Wildland Fire 2006, 15, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Ellis, P.F.M. The likelihood of ignition of dry-eucalypt forest litter by firebrands. Int. J. Wildland Fire 2015, 24, 225–235. [Google Scholar] [CrossRef]
- Hakes, R.S.P.; Salehizadeh, H.; Weston-Dawkes, M.J.; Gollner, M.J. Thermal characterization of firebrand piles. Fire Saf. J. 2019, 104, 34–42. [Google Scholar] [CrossRef]
- Kasymov, D.P.; Filkov, A.I.; Baydarov, D.A.; Sharypov, O.V. Interaction of Smoldering Branches and Pine Bark Firebrands with Fuel Bed at Different Ambient Conditions; SPIE—The International Society for Optical Engineering: Bellingham, WA, USA, 2016. [Google Scholar]
- Fernandez-Pello, A.C. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 2017, 91, 2–10. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildland Fire 2008, 17, 628–637. [Google Scholar] [CrossRef]
- Yang, G.; Ning, J.; Shu, L.; Zhang, J.; Yu, H.; Di, X. Spotting ignition of larch (Larix gmelinii) fuel bed by different firebrands. J. For. Res. 2021, 33, 171–181. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Y.; Sun, L.; Hu, H.; Guo, F.; Wang, G.; Zhang, H. Influence of fuel moisture content, packing ratio and wind velocity on the ignition probability of fuel beds composed of mongolian oak leaves via cigarette butts. Forests 2018, 9, 507. [Google Scholar] [CrossRef] [Green Version]
- Bryam, G.M. Combustion of forest fuels. In Forest Fire: Control and Use; McGraw-Hill Book Company: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Pickering, B.J.; Duff, T.J.; Baillie, C.; Cawson, J.G. Darker, cooler, wetter: Forest understories influence surface fuel moisture. Agric. For. Meteorol. 2021, 300, 108311. [Google Scholar] [CrossRef]
- Burton, J.E.; Cawson, J.G.; Filkov, A.I.; Penman, T.D. Leaf traits predict global patterns in the structure and flammability of forest litter beds. J. Ecol. 2021, 109, 1344–1355. [Google Scholar] [CrossRef]
- Anderson, S.A.J.; Anderson, W.R. Ignition and fire spread thresholds in gorse (Ulex europaeus). Int. J. Wildland Fire 2010, 19, 589–598. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Mitsopoulos, I.D.; Gatoulas, K. Assessing ignition probability and moisture of extinction in a mediterranean grass fuel. Int. J. Wildland Fire 2010, 19, 29–34. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J. Forest fuel bed ignitability under marginal fire weather conditions in Eucalyptus forests. Int. J. Wildland Fire 2019, 28, 198–204. [Google Scholar] [CrossRef]
- Tanskanen, H.; Venäläinen, A.; Puttonen, P.; Granström, A. Impact of stand structure on surface fire ignition potential in Picea abies and Pinus sylvestris forests in southern finland. Can. J. For. Res. 2005, 35, 410–420. [Google Scholar] [CrossRef]
- Schiks, T.J.; Wotton, B.M. Assessing the probability of sustained flaming in masticated fuel beds. Can. J. For. Res. 2015, 45, 68–77. [Google Scholar] [CrossRef]
- Van Wagner, C. Two Solitudes in Forest Fire Research; Canadian Forestry Service: Gainesville, FL, USA, 1971.
- Fernandes, P.M.; Cruz, M.G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef]
- Cawson, J.G.; Pickering, B.J.; Filkov, A.I.; Burton, J.E.; Kilinc, M.; Penman, T.D. Predicting ignitability from firebrands in mature wet eucalypt forests. For. Ecol. Manag. 2022, 519, 120315. [Google Scholar] [CrossRef]
- Finlayson, B.L.; McMahon, T.A.; Peel, M.C. Updated world map of the köppen-geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar]
- Ashton, D.H.; Attiwill, P.M. Tall open-forests. In Australian Vegetation, 2nd ed.; Groves, R.H., Ed.; Cambridge University Press: Oakleigh, VIC, Australia, 1994; pp. 157–196. [Google Scholar]
- Bureau of Meteorology. Climate Statistics for Australian Locations. Available online: http://www.bom.gov.au/climate/averages/tables/cw_086094.Shtml (accessed on 27 April 2022).
- Hines, F.; Tolhurst, K.G.; Wilson, A.A.G.; McCarthy, G.J. Overall Fuel Hazard Assessment Guide; Victorian Government Department of Sustainability and Environment: Melbourne, VIC, Australia, 2010.
- Ganteaume, A.; Jappiot, M.; Curt, T.; Lampin, C.; Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildland Fire 2014, 23, 1061–1075. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Defossé, G.E. Ignition probability of fine dead surface fuels of native patagonian forests of argentina. For. Syst. 2014, 23, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Blauw, L.G.; Wensink, N.; Bakker, L.; van Logtestijn, R.S.; Aerts, R.; Soudzilovskaia, N.A.; Cornelissen, J.H. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior. Ecol. Evol. 2015, 5, 3830–3841. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.; Aptroot, A.; Cornelissen, J.H. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C. Scaling up flammability from individual leaves to fuel beds. Oikos 2017, 126, 1428–1438. [Google Scholar] [CrossRef]
- McCarthy, G.J. Surface Fine Fuel Hazard Rating—Forest Fuels; Forest Science Centre, Department of Sustainability and Environment: Orbost, VIC, Australia, 2004. [Google Scholar]
- Cawson, J.G.; Pickering, B.; Penman, T.D.; Filkov, A. Quantifying the effect of mastication on flaming and smouldering durations in eucalypt forests and woodlands under laboratory conditions. Int. J. Wildland Fire 2021, 30, 611–624. [Google Scholar] [CrossRef]
- Bland, J.; Altman, D. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Twomey, P.J. How to use difference plots in quantitative method comparison studies. Ann. Clin. Biochem. 2006, 43, 124–129. [Google Scholar] [CrossRef]
- Lehnert, B. Blandaltmanleh: Plots (Slightly Extended) Bland-Altman Plots, 0.3.1. R Package Version 0.3.1. 2015. Available online: https://cran.r-project.org/web/packages/BlandAltmanLeh/index.html (accessed on 1 September 2022).
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Therneau, T.; Atkinson, B.; TRipley, B. Package ‘rpart’ Recursive Partitioning and Regression Trees, R Package Version 4.1.16. 2019. Available online: https://cran.r-project.org/web/packages/rpart/rpart.pdf (accessed on 21 May 2021).
- Milborrow, S. Package ‘rpart.Plot’ Plot ‘part’ Models: An Enhanced Version of ‘plot.Rpart’, R Package Version 3.1.1. 2020. Available online: https://cran.r-project.org/web/packages/rpart.plot/rpart.plot.pdf (accessed on 21 May 2021).
- R Development Core Team. R: A Language and Environment for Statistical Computing, 4.2.1; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Buckley, A.J. Fuel Reducing Regrowth Forests with a Wiregrass Fuel Type: Fire Behaviour Guide and Prescriptions; Fire Management Branch, Department of Conservation and Natural Resources: East Melbourne, VIC, Australia, 1993; pp. 1–34.
- Nugent, D.T.; Leonard, S.W.J.; Clarke, M.F. Interactions between the superb lyrebird (Menura novaehollandiae) and fire in south-eastern Australia. Wildl. Res. 2014, 41, 203–211. [Google Scholar] [CrossRef]
- Lyon, Z.D.; Morgan, P.; Stevens-Rumann, C.S.; Sparks, A.M.; Keefe, R.F.; Smith, A.M.S. Fire behaviour in masticated forest fuels: Lab and prescribed fire experiments. Int. J. Wildland Fire 2018, 27, 280–292. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Shaw, V. Bark traits, decomposition and flammability of australian forest trees. Aust. J. Bot. 2017, 65, 327–338. [Google Scholar] [CrossRef]
- Matvienko, O.V.; Kasymov, D.P.; Filkov, A.I.; Daneyko, O.I.; Gorbatov, D.A. Simulation of fuel bed ignition by wildland firebrands. Int. J. Wildland Fire 2018, 27, 550–561. [Google Scholar] [CrossRef]
- Suzuki, S.; Manzello, S.L.; Kagiya, K.; Suzuki, J.; Hayashi, Y. Ignition of mulch beds exposed to continuous wind-driven firebrand showers. Fire Technol. 2015, 51, 905–922. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, C.J. Fuel moisture thresholds in the flammability of calluna vulgaris. Fire Technol. 2011, 47, 421–436. [Google Scholar] [CrossRef]
- Fraser, I.P.; Williams, R.J.; Murphy, B.P.; Camac, J.S.; Vesk, P.A. Fuels and landscape flammability in an australian alpine environment. Austral. Ecol. 2016, 41, 657–670. [Google Scholar] [CrossRef]
- Leonard, S. Predicting sustained fire spread in tasmanian native grasslands. Env. Manag. 2009, 44, 430–440. [Google Scholar] [CrossRef] [PubMed]
Site | Successful Ignitions | Sustained Ignitions | ||||
---|---|---|---|---|---|---|
Within ± 25% | Under Estimate | Over Estimate | Within ± 25% | Under Estimate | Over Estimate | |
Beenak (n = 6) | 5 | 1 | 0 | 3 | 3 | 0 |
Bertha (n = 6) | 5 | 1 | 0 | 3 | 3 | 0 |
Big Creek (n = 6) | 2 | 4 | 0 | 3 | 2 | 1 |
Fifth Dam (n = 6) | 3 | 2 | 1 | 1 | 5 | 0 |
Turners (n = 7) | 5 | 2 | 0 | 2 | 4 | 1 |
Worlleys (n = 6) | 3 | 1 | 2 | 2 | 2 | 2 |
All sites (n = 37) | 23 (62%) | 11 (30%) | 3 (8%) | 14 (38%) | 19 (51%) | 4 (11%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burton, J.E.; Filkov, A.I.; Pickering, B.J.; Penman, T.D.; Cawson, J.G. Quantifying Litter Bed Ignitability: Comparison of a Laboratory and Field Method. Fire 2023, 6, 24. https://doi.org/10.3390/fire6010024
Burton JE, Filkov AI, Pickering BJ, Penman TD, Cawson JG. Quantifying Litter Bed Ignitability: Comparison of a Laboratory and Field Method. Fire. 2023; 6(1):24. https://doi.org/10.3390/fire6010024
Chicago/Turabian StyleBurton, Jamie E., Alexander I. Filkov, Bianca J. Pickering, Trent D. Penman, and Jane G. Cawson. 2023. "Quantifying Litter Bed Ignitability: Comparison of a Laboratory and Field Method" Fire 6, no. 1: 24. https://doi.org/10.3390/fire6010024