Effects of Low-Severity Fire on Soil Physico-Chemical Properties in an Andean Páramo in Southern Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Evaluation of Fire Behavior and Severity during Experimental Burns
2.4. Soil Physico-Chemical Properties Analyses
2.5. Statistical Analysis
3. Results
3.1. Fire Behavior and Severity of the Burns
3.2. Effects of the Experimental Fire on Soil Physico-Chemical Properties
3.3. Principal Component Analysis (PCA) in the Burned and Unburned Plots
4. Discussion
4.1. Fire Behavior and Severity during Experimental Burning
4.2. Low-Severity Fire Did Not Affect the Physico-Chemical Soil Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madriñán, S.; Cortés, A.J.; Richardson, J.E. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front. Genet. 2013, 4, 192. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Martín, A.E.; Montes-Pulido, C.R. Carbono almacenado en páramo andino. Entramado 2017, 13, 210–221. [Google Scholar] [CrossRef]
- Jiménez-Rivillas, C.; García, J.J.; Quijano-Abril, M.A.; Daza, J.M.; Morrone, J.J. A new biogeographical regionalisation of the Páramo biogeographic province. Aust. Syst. Bot. 2018, 31, 296–310. [Google Scholar] [CrossRef]
- Hofstede, R. Los Páramos en el Mundo: Su Diversidad y sus Habitantes; Hofstede, R., Segarra, P., Vásconez, P.M., Eds.; Global Peatland Initiative/NC-IUCN/EcoCiencia: Quito, Ecuador, 2003. [Google Scholar]
- Serrano-Giné, D.; Galárraga-Sánchez, R. El páramo andino: Características territoriales y estado ambiental. Aportes interdisciplinarios para su conocimiento. Estud. Geogr. 2015, 76, 369–393. [Google Scholar] [CrossRef]
- Chuncho, C.; Chuncho, G. Páramos del Ecuador, importancia y afectaciones: Una revisión. Bosques Latid. Cero. 2019, 9, 71–83. [Google Scholar]
- Acevedo Amaya, O.J. Identificación de las Principales Variables de los Suelos Asociadas a Condiciones de Humedad: Discriminación Taxonómica de Suelos Hidromórficos; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2014. [Google Scholar]
- Daza Torres, M.C.; Hernández Florez, F.; Alba Triana, F. Efecto del Uso del Suelo en la Capacidad de Almacenamiento Hídrico en el Páramo de Sumapaz-Colombia. Rev. Fac. Nal. Agrom. Medellín 2014, 67, 7189–7200. [Google Scholar] [CrossRef]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Llambí, L.D.; Soto, A.; Celleri, R.; De Bievre, B.; Ochoa, B.; Borja, P. Páramos Andinos: Ecología, Hidrología y Suelos de Páramos. Los Suelos del Páramo. 2012. Available online: https://biblio.flacsoandes.edu.ec/libros/digital/56475.pdf (accessed on 15 May 2022).
- Van der Hammen, T.; Otero-García, J.; Morales, M.; Otero, J. Los páramos: Archipiélagos terrestres en el norte de los Andes. In Atlas de Paramos de Colombia; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2007. [Google Scholar]
- Iñiguez, V.; Morales, O.; Cisneros, F.; Bauwens, W.; Wyseure, G. Analysis of the drought recovery of Andosols on southern Ecuadorian Andean páramos. Hydrol. Earth Syst. Sci. 2016, 20, 2421–2435. [Google Scholar] [CrossRef]
- Pinos-Morocho, D.; Morales-Matute, O.; Durán-López, M.E. Suelos de páramo: Análisis de percepciones de los servicios ecosistémicos y valoración económica del contenido de carbono en la sierra sureste del Ecuador. Rev. Cienc. Ambient. 2021, 55, 151–173. [Google Scholar] [CrossRef]
- Shoji, S.; Nanzyo, M.; Dahlgren, R.A. Volcanic Ash Soils: Genesis, Properties, and Utilization; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Buytaert, W. The Properties of the Soils of the South Ecuadorian Páramo and the Impact of Land Use Changes on Their Hydrology. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2004. [Google Scholar]
- Lazo, P.X.; Mosquera, G.M.; McDonnell, J.J.; Crespo, P. The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. J. Hydrol. 2019, 572, 805–819. [Google Scholar] [CrossRef]
- Cortés-Duque, J.; Sarmiento Pinzón, C.E. Visión Socioecosistémica de los Páramos y la alta Montaña Colombiana. Memorias del Proceso de Definición de Criterios para la Delimitación de Páramos; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2013. [Google Scholar]
- Carrión-Paladines, V.; Benítez, Á.; García-Ruíz, R. Conversion of Andean montane forest to exotic forest plantation modifies soil physicochemical properties in the buffer zone of Ecuador’s Podocarpus National Park. For. Ecosyst. 2022, 9, 100076. [Google Scholar] [CrossRef]
- Diaz-Acevedo, C.J.; Romero-Alarcon, L.V.; Miranda-Esquivel, D.R. Páramos neotropicales como unidades biogeográficas. Rev. Biol. Trop. 2020, 68, 508–516. [Google Scholar] [CrossRef]
- DeMay, S.M.; Roon, D.A.; Rachlow, J.L.; Cisneros, R. Selective foraging on bromeliads by Andean bears in the Ecuadorian páramo. Ursus 2014, 25, 139–147. [Google Scholar] [CrossRef]
- Otero, J.D.; Figueroa, A.; Muñoz, F.A.; Peña, M.R. Loss of soil and nutrients by surface runoff in two agro-ecosystems within an Andean paramo area. Ecol. Eng. 2011, 37, 2035–2043. [Google Scholar] [CrossRef]
- Thompson, J.B.; Zurita-Arthos, L.; Müller, F.; Chimbolema, S.; Suárez, E. Land use change in the Ecuadorian páramo: The impact of expanding agriculture on soil carbon storage. Arct. Antarct. Alp. Res. 2021, 53, 48–59. [Google Scholar] [CrossRef]
- Carrillo-Rojas, G.; Silva, B.; Rollenbeck, R.; Célleri, R.; Bendix, J. The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric. For. Meteorol. 2019, 265, 30–47. [Google Scholar] [CrossRef]
- Sierra, R.; Cerón, C.; Palacios, W.; Valencia, R. Criterios para la Clasificación de la Vegetación del Ecuador; Sierra, R., Ed.; Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental; Proyecto INEFAN/GEF-BIRF y EcoCiencia: Quito, Ecuador, 1999. [Google Scholar]
- Hofstede, R. El páramo como espacio para la fijación de carbono atmosférico. In El Páramo Como Espacio de Mitigación de Carbono Atmosférico; Serie Páramo 1; GTP/Abya-Yala: Quito, Ecuador, 1999. [Google Scholar]
- Messina, J.P.; Cochrane, M.A. The forests are bleeding: How land use change is creating a new fire regime in the Ecuadorian Amazon. J. Latin Am. Geogr. 2007, 6, 85–100. [Google Scholar] [CrossRef]
- Schritt, H.; Beusch, C.; Ríos Guayasamín, P.; Kaupenjohann, M. Transformation of traditional shifting cultivation into permanent cropping systems: A case study in Sarayaku, Ecuador. Ecol. Soc. 2020, 25, 10. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Horn, S.P.; Kappelle, M. Fire in the páramo ecosystems of Central and South America. In Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics; Springer: Cham, Switzerland, 2009; pp. 505–539. [Google Scholar]
- Farley, K.A.; Kelly, E.F. Effects of afforestation of a páramo grassland on soil nutrient status. For. Ecol. Manag. 2004, 195, 281–290. [Google Scholar] [CrossRef]
- Buytaert, W.; Iniguez, V.; De Bievre, B. The effects of afforestation and cultivation on water yield in the Andean páramo. For. Ecol. Manag. 2007, 251, 22–30. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Vargas Ríos, O.; Meza Elizalde, M.C.; Oliveras, I. Incendios en ecosistemas del norte de Suramérica: Avances en la ecología del fuego tropical en Colombia, Ecuador y Perú. Caldasia 2020, 42, 1–16. [Google Scholar] [CrossRef]
- Díaz, S.C.; Quezada, L.C.; Álvarez, L.J.; Loján-Córdova, J.; Carrión-Paladines, V. Indigenous use of fire in the paramo ecosystem of southern Ecuador: A case study using remote sensing methods and ancestral knowledge of the Kichwa Saraguro people. Fire Ecol. 2023, 19, 5. [Google Scholar] [CrossRef] [PubMed]
- Minervini, M.G.; Morrás, H.J.; Taboada, M.A. Efectos del fuego en la matriz del suelo: Consecuencias sobre las propiedades físicas y mineralógicas. Ecol. Aust. 2018, 28, 12–27. [Google Scholar] [CrossRef]
- Carrión-Paladines, V.; Hinojosa, M.B.; Jiménez Álvarez, L.; Reyes-Bueno, F.; Correa Quezada, L.; García-Ruiz, R. Effects of the Severity of Wildfires on Some Physical-Chemical Soil Properties in a Humid Montane Scrublands Ecosystem in Southern Ecuador. Fire 2022, 5, 66. [Google Scholar] [CrossRef]
- Chandra, K.K.; Bhardwaj, A.K. Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient, and microbial status of soil. Int. J. Res. Agric. For. 2015, 5, 69–78. [Google Scholar]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L. Fire effects on soils aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Podwojewski, P.; Poulenard, J.; Toulkeridis, T.; Gräfe, M. Polygenic soils in the southern central Ecuadorian highlands as the result of long-lasting pedogenesis, geodynamic processes and climate change. J. S. Am. Earth Sci. 2022, 120, 104096. [Google Scholar] [CrossRef]
- Calispa, M.; Vásconez, F.; Santamaría, S.; Samaniego, P. Los Suelos de los Páramos del Ecuador En: Los Páramos del Ecuador: Pasado, Presente y Futuro; Hofstede, R., Suárez, E., Mena-Vásconez, P., Eds.; Universidad San Francisco: Quito, Ecuador, 2023. [Google Scholar] [CrossRef]
- Kappelle, M.; Horn, S.P. The Páramo ecosystem of Costa Rica’s highlands. In Costa Rican Ecosystems; The University of Chicago Press: Chicago, IL, USA, 2016; pp. 492–523. [Google Scholar]
- Galeas, R.; Guevara, J.E.; Medina-Torres, B.; Chinchero, M.Á.; Herrera, X. Sistema de Clasificación de los Ecosistemas del Ecuador Continental; Ministerio del Ambiente del Ecuador: Quito, Ecuador, 2013. [Google Scholar]
- San Lucas GAD Parroquial; LOJA, Cantón. Actualización del Plan de Desarrollo y Ordenamiento Territorial 2015–2019; Plan de Desarrollo y Ordenamiento Territorial: Loja, Ecuador, 2015. [Google Scholar]
- Coronel-Alulima, T.N. Los sistemas agroecológicos de la parroquia San Lucas (Loja). Prácticas resilientes ante el cambio climático. Let. Verdes Rev. Latinoam. Estud. Socioambientales 2019, 26, 191–212. [Google Scholar] [CrossRef]
- Hueso-González, P.; Martínez-Murillo, J.F.; Ruiz-Sinoga, J.D. Prescribed fire impacts on soil properties, overland flow and sediment transport in a Mediterranean forest: A 5 year study. Sci. Total Environ. 2018, 636, 1480–1489. [Google Scholar] [CrossRef]
- Nelson, R.M., Jr. An effective wind speed for models of fire spread. Int. J. Wildland Fire. 2002, 11, 153–161. [Google Scholar] [CrossRef]
- Gillon, D.; Houssard, C.; Valette, J.C.; Rigolot, E. Nitrogen and phosphorus cycling following prescribed burning in natural and managed Aleppo pine forests. Can. J. For. Res. 1999, 29, 1237–1247. [Google Scholar] [CrossRef]
- Calderón, R.D.J.B.; Flores, R.E.E. Análisis de la problemática de los incendios forestales y sus implicaciones en la pérdida de cobertura forestal en Cintalapa, Chiapas. Rev. Geogr. Agríc. 2020, 65, 63–83. [Google Scholar]
- Waldrop, T.A.; Goodrick, S.L. Introduction to Prescribed Fires in Southern Ecosystems. Science Update SRS-054; US Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2012; Volume 80, p. 54.
- Bendix, J.; Rollenbeck, R.; Fabian, P.; Emck, P.; Richter, M.; Beck, E. Climate variability. In Gradients in a Tropical Mountain Ecosystem of Ecuador; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Esquivel-Hernández, G.; Sánchez-Murillo, R.; Vargas-Salazar, E. Chirripó hydrological research site: Advancing stable isotope hydrology in the Central American Páramo. Hydrol. Process. 2021, 35, e14181. [Google Scholar] [CrossRef]
- Geron, C.; Hays, M. Air emissions from organic soil burning on the coastal plain of North Carolina. Atmos. Environ. 2013, 64, 192–199. [Google Scholar] [CrossRef]
- National Wildfire Coordinating Group. Interagency Fire Use Module Field Guide. NWCG Guide for Wildland Fire Modules, PMS 431, Boise, Idaho, USA. 2014. Available online: https://training.nwcg.gov/pre-courses/s490/s490pcw/Interagency%20Fire%20Use%20Module.pdf (accessed on 22 October 2022).
- Manals-Cutiño, E.M.; Penedo-Medina, M.; Salas-Tort, D. Caracterización del bagazo de caña como biomasa vegetal. Tecnol. Quím. 2015, 35, 244–255. [Google Scholar]
- Cardoso, A.Á.; Pereira, F.J.; Pereira, M.P.; Corrêa, F.F.; de Castro, E.M.; Santos, B.R. Anatomy of stems, leaves, roots, and the embryo of Garcinia brasiliensis Mart.-Clusiaceae. Rev. Ciênc. Agrár. Amaz. J. Agric. Environ. Sci. 2013, 56, 23–29. [Google Scholar] [CrossRef]
- Rocha, D.R.; Melquiades, F.L.; Thomaz, E.L. Modeling the soil burn effect for temperature prediction by energy dispersive X ray Fluorescence in an haplic cambisol soil. Appl. Radiat. Isot. 2019, 150, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Aguirre Briones, F. Manual de Prevención de Riesgos en Incendios Forestales; TRAGSA: Madrid, Spain, 1996. [Google Scholar]
- Pereira, P.; Jordán, A.; Cerdà, A.; Martin, D. Editorial: The role of ash in fire-affected ecosystems. Catena 2014, 135, 337–339. [Google Scholar] [CrossRef]
- Bodí, M.; Martin, D.A.; Santín, C.; Balfour, V.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix Solera, J. Wildland fire ash: Production, composition, and eco-hydro-geomorphic effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Alexakis, D.E. Contaminated land by wildfire effect on ultramafic soil and associated human health and ecological risk. Land 2020, 9, 409. [Google Scholar] [CrossRef]
- Valdes, L. Efectos del fuego en algunas características de suelos de pinares, Macurije, Pinar del Río, Cuba. Rev. Latinoam. Recur. Nat. 2016, 12, 60–65. [Google Scholar]
- Santín, A.; Vidal, E. Generación de una Línea Base de los Reservorios de Carbono de los Páramos del PNP y Evaluación de su Aplicación como Mecanismos de Mitigación al Cambio Climático. Ph.D. Thesis, Tesis de Ingeniería en Manejo y Conservación del Medio Ambiente, Loja, Ecuador, 2012. [Google Scholar]
- Sandoval, M.; Fernández, J.; Seguel, O.; Becerra, J.; Salazar, D. Métodos de Análisis Físicos de Suelos. Sociedad Chilena de la Ciencia del Suelo. Ph.D. Thesis, Universidad de Concepción, Concepción, Chile, 2011; pp. 1–75. [Google Scholar]
- Fries, A.; Silva, K.; Pucha-Cofrep, F.; Oñate-Valdivieso, F.; Ochoa-Cueva, P. Water balance and soil moisture deficit of different vegetation units under semiarid conditions in the andes of southern Ecuador. Climate 2020, 8, 30. [Google Scholar] [CrossRef]
- Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; John Wiley & Sons: Hoboken, NJ, USA, 1965. [Google Scholar]
- Mingming, G.U.O.; Wenlong, W.; Hongliang, K.; Bo, Y. Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. J. Arid Land 2018, 10, 712–725. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, Part II; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Vela Correa, G.; López Blanco, J.; Rodríguez Gamiño, M.D.L. Niveles de carbono orgánico total en el Suelo de Conservación del Distrito Federal, centro de México. Investig. Geogr. 2012, 77, 18–30. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms. In Methods of Soil Analysis, Agronomy Monograph 9, Part 2, 2nd ed.; Page, A.L., Ed.; ASA, SSSA: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar] [CrossRef]
- Chowdhury, S.; Manjón-Cabeza, J.; Ibáñez, M.; Mestre, C.; Broncano, M.J.; Mosquera-Losada, M.R.; Plaixats, J.; Sebastià, M.T. Responses in Soil Carbon and Nitrogen Fractionation after Prescribed Burning in the Montseny Biosphere Reserve (NE Iberian Peninsula). Sustainability 2022, 14, 4232. [Google Scholar] [CrossRef]
- Walteros-Torres, I.; Palacios-Pacheco, S.; Cely, G.E.; Serrano, P.A.; Moreno-Pérez, D.F. Influencia del cambio de uso del suelo sobre las reservas de carbono orgánico en el Parque Natural Regional Cortadera, Boyacá (Colombia). Rev. UDCA Actual. Divulg. Cient. 2022, 25, 1–9. [Google Scholar]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Yuste, J.C.; Hereş, A.M.; Ojeda, G.; Paz, A.; Pizano, C.; García-Angulo, D.; Lasso, E. Soil heterotrophic CO2 emissions from tropical high-elevation ecosystems (Páramos) and their sensitivity to temperature and moisture fluctuations. Soil Biol. Biochem. 2017, 110, 8–11. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Truba, M. The analysis of some physical properties of drained peat-moorsh soil layers. Annals of Warsaw University of Life Sciences-SGGW. Land Reclam. 2013, 45, 41–48. [Google Scholar]
- Luteyn, J.L.; Churchill, S.P.; Griffin, D.; Gradstein, S.R.; Sipman, H.J.; Mauricio, R.; Gavilanes, A. Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature; New York Botanical Garden Press: New York, NY, USA, 1999; Volume 278. [Google Scholar]
- Rodríguez-Trejo, D.A.; Martínez-Muñoz, P.; Pulido-Luna, J.A.; Martínez-Lara, P.J.; Cruz-López, J.D. Combustibles, comportamiento del fuego y emisiones en un pastizal y una sabana artificiales en Chiapas, México. Rev. Biol. Trop. 2020, 68, 641–654. [Google Scholar] [CrossRef]
- Anderson, A.N.; Cook, G.D.; Williams, R.J. Fire in Tropical Savannas; Springer: New York, NY, USA, 2003. [Google Scholar]
- García, V.J.; Márquez, C.O.; Rodríguez, M.V.; Orozco, J.J.; Aguilar, C.D.; Ríos, A.C. Páramo Ecosystems in Ecuador’s Southern Region: Conservation State and Restoration. Agronomy 2020, 10, 1922. [Google Scholar] [CrossRef]
- Richter, C.; Rejmánek, M.; Miller, J.E.; Welch, K.R.; Weeks, J.; Safford, H. The species diversity× fire severity relationship is hump-shaped in semiarid yellow pine and mixed conifer forests. Ecosphere 2019, 10, e02882. [Google Scholar] [CrossRef]
- Mehdi, H.; Ali, S.; Ali, M.; Mostafa, A. Effects of different fire severity levels on soil chemical and physical properties in Zagros forests of western Iran. Folia For. Pol. 2012, 54, 241–250. [Google Scholar]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Moya, D.; González-De Vega, S.; Lozano, E.; García-Orenes, F.; Mataix-Solera, J.; Lucas-Borja, M.E.; de las Heras, J. The burn severity and plant recovery relationship afect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and mid-terms after wildfre. J. Environ. Manag. 2019, 235, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef]
- Woods, S.W.; Balfour, V.N. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. J. Hydrol. 2010, 393, 274–286. [Google Scholar] [CrossRef]
- Larsen, I.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; Benavides-Solorio, J.D.; Schaffrath, K. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef]
- Laureda, D.A.; Botta, G.F.; Tolón Becerra, A.; Rosatto, H.G. Compactación del suelo inducida por la maquinaria en campos de polo en Argentina. Rev. Fac. Cienc. Agrar. 2016, 48, 79–99. [Google Scholar]
- Lucas-Borja, M.E.; Ortega, R.; Miralles, I.; Plaza-Álvarez, P.A.; González-Romero, J.; Peña-Molina, J.; Moya, D.; Zema, D.A.; de las Heras, J. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. Eur. J. For. Res. 2020, 139, 935–945. [Google Scholar] [CrossRef]
- Erkovan, Ş.; Koc, A.; Güllap, M.K.; Erkovan, H.I.; Bilen, S. The effect of fire on the vegetation and soil properties of ungrazed shortgrasssteppe rangeland of the Eastern Anatolia region of Turkey. Turk. J. Agric. 2016, 40, 290–299. [Google Scholar] [CrossRef]
- Rollenbeck, R.; Bendix, J. Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos. Res. 2011, 99, 277–289. [Google Scholar] [CrossRef]
- Patiño, S.; Hernández, Y.; Plata, C.; Domínguez, I.; Daza, M.; Oviedo-Ocaña, R.; Buytaer, W.; Ochoa-Tocachi, B.F. Influence of land use on hydro-physical soil properties of Andean páramos and its effect on streamflow buffering. Catena 2021, 202, 105227. [Google Scholar] [CrossRef]
- Wagai, R.; Kajiura, M.; Asano, M.; Hiradate, S. Nature of soil organo-mineral assemblage examined by sequential density fractionation with and without sonication: Is allophanic soil different? Geoderma 2015, 241, 295–305. [Google Scholar] [CrossRef]
- Harden, C.P. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 2006, 79, 249–263. [Google Scholar] [CrossRef]
- Osorio, A.; Bahamon, C. Dinámica de la Humedad del Suelo en Bosques Altoandinos en el Páramo de Guerrero, Cundinamarca-Colombia. Ph.D. Thesis, Universidad Nacional de Colombia sede Medellín, Medellín, Colombia, 2008. [Google Scholar]
- Medina, G.; Mena, P.V. Páramo como Espacio de Mitigación de Carbono Atmosférico; GTP: Quito, Ecuador, 1999. [Google Scholar]
- Quiroz Dahik, C.; Crespo, P.; Stimm, B.; Mosandl, R.; Cueva, J.; Hildebrandt, P.; Weber, M. Impacts of pine plantations on carbon stocks of páramo sites in southern Ecuador. Carbon Balance Manag. 2021, 16, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cargua, F.E.; Rodríguez, M.V.; Recalde, C.G.; Vinueza, L.M. Cuantificación del contenido de carbono en una plantación de pino insigne (Pinus radiata) y en estrato de páramo de ozogoche bajo, Parque Nacional Sangay, Ecuador. Inf. Tecnol. 2014, 25, 83–92. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nut. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Cienc. Suelo Apl. Ambient. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Turner, B.L. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 2010, 76, 6485–6493. [Google Scholar] [CrossRef]
- Rodriguez-Cardona, B.M.; Coble, A.A.; Wymore, A.S.; Kolosov, R.; Podgorski, D.C.; Zito, P.; Spencer, R.G.M.; Prokushkin, A.S.; McDowell, W.H. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Sci. Rep. 2020, 10, 8722. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Borja, M.E.; Plaza-Alvarez, P.A.; Xu, X.; Carra, B.G.; Zema, D.A. Exploring the factors influencing the hydrological response of soil after low and high-severity fires with post-fire mulching in Mediterranean forests. Int. Soil Water Conserv. Res. 2023, 11, 169–182. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, L.; Wang, X.; Wei, X.; Gao, H.; Zhang, Y.; Cheng, J. Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant Soil 2018, 428, 123–136. [Google Scholar] [CrossRef]
- Mendoza, L.G.; Vera, V.; Giler, J.M.; Simbaña, K. Características fisicoquímicas de suelos de uso agrícola y forestal. Caso: San Pablo de Tarugo, Chone–Ecuador. Rev. Cient. Cienc. Nat. Ambient. 2022, 16, 334–341. [Google Scholar] [CrossRef]
- Akburak, S.; Son, Y.; Makineci, E.; Çakir, M. Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest. J. For. Res. 2018, 29, 687–696. [Google Scholar] [CrossRef]
- Bowman, D.M.; Perry, G.L.; Higgins, S.L.; Johnson, C.N.; Fuhlendorfand, S.D.; Murphy, B.P. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150169. [Google Scholar] [CrossRef] [PubMed]
- Avellaneda-Torres, L.M.; Sicard, T.E.L.; Rojas, E.T. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils. Sci. Total Environ. 2018, 631, 1600–1610. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 3–33. [Google Scholar] [CrossRef]
Blocks | Plot | Treatment | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Wind Direction (°) | Precipitation (mm) | Solar Radiation (W/m2) |
---|---|---|---|---|---|---|---|---|
1 | 1 | T1 = uphill | 14.4 | 77 | 12.1 | 90 | 0 | 1209 |
2 | T2 = downhill | 14.3 | 79 | 8 | 90 | 0 | 492 | |
3 | Control plot | 14.5 | 75 | 6.3 | 90 | 0 | 1364 | |
2 | 4 | T1 = uphill | 15.9 | 72 | 8.9 | 90 | 0 | 1376 |
5 | T2 = downhill | 15.7 | 70 | 8.9 | 157.5 | 0 | 1208 | |
6 | Control plot | 16.1 | 70 | 9.4 | 135 | 0 | 1243 | |
3 | 7 | T1 = uphill | 16.4 | 70 | 8.9 | 135 | 0 | 1155 |
8 | T2 = downhill | 16.5 | 71 | 8 | 135 | 0 | 1164 | |
9 | Control plot | 16.2 | 69 | 9.4 | 135 | 0 | 1005 | |
Average | 15.6 | 72.6 | 8.9 | 117.5 | 0 | 1135.1 |
Fine Dead Fuel Moisture (Interagency Fire Use Module Field Guide) | Fuel Loading and Humidity | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | °C | Relative humidity (%) | Shading (%) | Ignition probability (%) | Wind speed (m/s) | Danger index | Wet biomass (kg m−2) | Dry biomass (kg m−2) | Fuel moisture content (%) |
15.6 ± 0.2 | 72.6 ± 0.9 | 0–10 | 40 | 8.9 ± 0.2 | Alert | 2.21 ± 0.33 | 17.90 ± 0.32 | 23.6 ± 1.5 |
Variable | Repeated Measures ANOVA S1 and S2 (p-Value) | ||
---|---|---|---|
Burning (B) | Sampling Time (T) | B × T | |
Bd (g cm−3) | 0.2844 | 0.0263; S2 > S1 | 0.5487 |
Porosity (%) | 0.655 | 0.0402; S2 < S1 | 0.3673 |
Soil water content (%) | 0.6376 | 0.0472; S2 > S1 | 0.2113 |
SOM (%) | 0.4722 | 0.0701; S2 = S1 | 0.8689 |
SOC (tC ha−1) | 0.9577 | 0.0687; S2 = S1 | 0.6164 |
pH | 0.0174 | 0.0428; S2 > S1 | 0.1354 |
SAN (mg/kg) | 0.392 | 0.0384; S2 > S1 | 0.3496 |
Mg (Meq/100 g) | 0.8267 | 0.015; S2 > S1 | 0.7094 |
P (mg/kg) | 0.1999 | 0.4701; S2 = S1 | 0.7608 |
K (Meq/100 g) | 0.1352 | 0.1141; S2 = S1 | 0.006 |
Ca (Meq/100 g) | 0.2379 | 0.8305; S2 = S1 | 0.2037 |
Variable | PC1 | PC2 |
---|---|---|
Bd (g cm−3) | 0.348 * | −0.154 |
Porosity (%) | −0.349 * | 0.232 |
Soil water content (%) | −0.101 | 0.498 * |
SOM (%) | 0.367 * | 0.089 |
SOC (tC ha−1) | 0.386 * | −0.065 |
pH | −0.319 * | −0.009 |
SAN (mg/kg) | 0.374 * | 0.165 |
Mg (Meq/100 g) | 0.367 * | 0.050 |
P (mg/kg) | 0.262 | 0.298 * |
K (Meq/100 g) | −0.080 | 0.501 * |
Ca (Meq/100 g) | 0.105 | 0.541 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Paladines, V.; Fries, A.; Hinojosa, M.B.; Oña, A.; Álvarez, L.J.; Benítez, Á.; Rodríguez, F.L.; García-Ruiz, R. Effects of Low-Severity Fire on Soil Physico-Chemical Properties in an Andean Páramo in Southern Ecuador. Fire 2023, 6, 447. https://doi.org/10.3390/fire6120447
Carrión-Paladines V, Fries A, Hinojosa MB, Oña A, Álvarez LJ, Benítez Á, Rodríguez FL, García-Ruiz R. Effects of Low-Severity Fire on Soil Physico-Chemical Properties in an Andean Páramo in Southern Ecuador. Fire. 2023; 6(12):447. https://doi.org/10.3390/fire6120447
Chicago/Turabian StyleCarrión-Paladines, Vinicio, Andreas Fries, María Belén Hinojosa, Andy Oña, Leticia Jiménez Álvarez, Ángel Benítez, Fausto López Rodríguez, and Roberto García-Ruiz. 2023. "Effects of Low-Severity Fire on Soil Physico-Chemical Properties in an Andean Páramo in Southern Ecuador" Fire 6, no. 12: 447. https://doi.org/10.3390/fire6120447
APA StyleCarrión-Paladines, V., Fries, A., Hinojosa, M. B., Oña, A., Álvarez, L. J., Benítez, Á., Rodríguez, F. L., & García-Ruiz, R. (2023). Effects of Low-Severity Fire on Soil Physico-Chemical Properties in an Andean Páramo in Southern Ecuador. Fire, 6(12), 447. https://doi.org/10.3390/fire6120447