Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Description, Soil Sampling, Geobotanical Descriptions and Fire Event-Dating
2.2. General Soil Analysis
2.3. Soil Organic Matter and PAHs Analysis
2.4. Statistics
3. Results
3.1. Vegetation at the Study Sites
3.2. Morphological Properties of Soils
3.3. The Main Chemical Soil Properties
3.4. Carbon and Nitrogen Content, Water Soluble Organic Matter
3.5. Content of PAHs of Soils
4. Discussion
4.1. Vegetation Dynamics, Morphological and Chemical Soil Properties
4.2. Soil Organic Matter of Studied Soils
4.3. Content of PAHs of Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sannikov, S.N. Ecology and Geography of Scots Pine Natural Regeneration; Nauka: Moscow, Russia, 1992; p. 264. (In Russian) [Google Scholar]
- Dymov, A.A.; Startsev, V.V.; Gorbach, N.M.; Pausova, I.N.; Gabov, D.N.; Donnerhack, O. Comparison of the Methods for Determining Pyrogenically Modified Carbon Compounds. Eurasian Soil Sci. 2021, 54, 1668–1680. [Google Scholar] [CrossRef]
- Gorbach, N.; Kutyavin, I.; Startsev, V.; Dymov, A. Dynamics of fires in the northeast of the European part of Russia in the Holocene. Theor. Appl. Ecol. 2021, 3, 104–110. (In Russian) [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Peckham, S.D.; Ahl, D.E.; Gower, S.T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 2007, 450, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Vedrova, E.F.; Evdokimenko, M.D.; Bezkorovainaya, I.N.; Mukhortova, L.V.; Cherednikova, Y.S. Carbon reserves in organic matter of postfire pine forests in southwestern lake Baikal basin. Lesovedenie 2012, 1, 3–13. (In Russian) [Google Scholar]
- Santin, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef]
- Maksimova, E.; Abakumov, E. Soil organic matter quality and composition in a postfire Scotch pine forest in Tolyatti, Samara region. Biol. Commun. 2017, 62, 169–180. [Google Scholar] [CrossRef]
- Gabbasova, I.M.; Garipov, T.T.; Komissarov, M.A.; Suleimanov, R.R.; Sidorova, L.V.; Suleimanov, A.R.; Nazyrova, F.I.; Suyundukov, Y.T.; Khasanova, R.F.; Komissarov, A.V. The impact of fire on properties on steppe soils in trans-ural region. Eurasian Soil Sci. 2019, 52, 1598–1607. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.A.; Pavlov, B.A.; Mirin, D.M.; Yakkonen, K.L.; Sedova, A.M. The influence of forest fires on the formation of the profile of podzols. Biosfera 2020, 12, 32–44. (In Russian) [Google Scholar] [CrossRef]
- Dymov, A.A.; Grodnitskaya, I.D.; Yakovleva, E.V.; Dybrovskiy, Y.A.; Kutyavin, I.N.; Startsev, V.V.; Milanovsky, E.Y.; Prokushkin, A.S. Albic Podzols of boreal Pine forests of Russia: Soil organic matter, physico-chemical and microbiological properties across pyrogenic history. Forests 2022, 13, 1831. [Google Scholar] [CrossRef]
- Bezkorovainaya, I.N.; Ivanova, G.A.; Tarasov, P.A.; Sorokin, N.D.; Bogorodskaya, A.V.; Ivanov, V.A.; Konard, S.G.; McRae, D.J. Pyrogenic Transformation of Pine Stand Soil in Middle Taiga of Krasnoyarsk Region. Contemp. Probl. Ecol. 2005, 12, 143–152. [Google Scholar]
- Dymov, A.A.; Gabov, D.N.; Milanovskii, E.Y. 13C-NMR, PAHs, WSOC and repellence of fire affected soils (Albic Podzols) in lichen pine forests, Russia. Environ. Earth Sci. 2017, 76, 275. [Google Scholar] [CrossRef]
- Dymov, A.A. Soil Successions in Boreal Forests of the Komi Republic; GEOS: Moscow, Russia, 2020; p. 336, (In Russian). [Google Scholar] [CrossRef]
- Nachtergaele, F. Soil taxonomy—A basic system of soil classification for making and interpreting soil surveys: Second edition, by Soil Survey Staff, 1999, USDA–NRCS, Agriculture Handbook number 436, Hardbound. Geoderma 2001, 99, 336–337. [Google Scholar] [CrossRef]
- Van Ranst, E. Soil Atlas of Europe; European Commission: Brussels, Belgium, 2005; p. 128.
- Lundstrom, U.S.; van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Ivanov, A.L.; Shoba, S.A. (Eds.) Unified State Register of Soil Resources of Russia. Version 1.0; Dokuchaev Soil Science Institute: Moscow, Russia, 2014; p. 768. (In Russian) [Google Scholar]
- Krasnoshchekov, Y.N. Postpyrogenic variability of litter in mountain forest of Baikal region. Eurasian Soil Sci. 2019, 52, 258–270. [Google Scholar] [CrossRef]
- Loiko, S.V.; Kuzmina, D.M.; Dudko, A.A.; Konstantinov, A.O.; Vasilyeva, Y.U.A.; Kurasova, A.O.; Lim, A.G.; Kulizhsky, S.P. Charcoals of albic podzols of the middle taiga of Western Siberia as indicator of ecosystem history. Eurasian Soil Sci. 2022, 55, 176–192. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X.; Martin, D. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 2012, 191, 105–114. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Harden, J.; Georgiou, K.; Hemes, K.S.; Malhotra, A.; Nolan, C.J.; Jackson, R.B. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 2021, 15, 5–13. [Google Scholar] [CrossRef]
- Chebykina, E.; Abakumov, E. Essential Role of Forest Fires in Humic Acids Structure and Composition Alteration. Agronomy 2022, 12, 2910. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Bryanin, S.; Kondratova, A.; Abramova, E. Litter Decomposition and Nutrient Dynamics in Fire-Affected Larch Forests in the Russian Far East. Forests 2020, 11, 882. [Google Scholar] [CrossRef]
- Bryanin, S.V.; Danilov, A.V.; Susloparova, E.S.; Ivanov, A.V. Pyrogenic Carbon Pools of the Upper Amur Region. Contemp. Probl. Ecol. 2022, 15, 777–786. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Merino, A.; Bryant, R.; Loader, N.J. Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma 2016, 264, 71–80. [Google Scholar] [CrossRef]
- Jiménez-Morillo, N.T.; de la Rosa, J.M.; Waggoner, D.; Almendros, G.; González-Vila, F.J.; González-Pérez, J.A. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 2016, 145, 266–273. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’Yanovskii, N.V.; Latkin, T.B.; Pokryshkin, S.A.; Berzhonskis, V.R.; Polyakova, O.V.; Lebedev, A.T. Peat burning—An important source of pyridines in the earth atmosphere. Environ. Pollut. 2020, 266, 115109. [Google Scholar] [CrossRef] [PubMed]
- Bird, M.I.; Ascough, P.L. Isotopes in pyrogenic carbon: A review. Org. Geochem. 2012, 42, 1529–1539. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in soils: The use of benzenecarboxylic acids as specific markers. Org. Geochem. 1998, 29, 811–819. [Google Scholar] [CrossRef]
- Brodowski, S.; Rodionov, A.; Haumaier, L.; Glaser, B.; Amelung, W. Revised black carbon assessment using benzene polycarboxylic acids. Org. Geochem. 2005, 36, 1299–1310. [Google Scholar] [CrossRef]
- Guggenberger, G.; Rodionov, A.; Shibistova, O.; Grabe, M.; Kasansky, O.A.; Fuchs, H.; Mikheyeva, N.; Zrazhevskaya, G.; Flessa, H. Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. Glob. Chang. Biol. 2008, 14, 1367–1381. [Google Scholar] [CrossRef]
- Dymov, A.; Gabov, D. Pyrogenic alterations of Podzols at the North-east European part of Russia: Morphology, carbon pools, PAH content. Geoderma 2015, 241, 230–237. [Google Scholar] [CrossRef]
- Dymov, A.; Startsev, V.; Milanovsky, E.; Valdes-Korovkin, I.; Farkhodov, Y.; Yudina, A.; Donnerhack, O.; Guggenberger, G. Soils and soil organic matter transformations during the two years after a low-intensity surface fire (Subpolar Ural, Russia). Geoderma 2021, 404, 115278. [Google Scholar] [CrossRef]
- Rey-Salgueiro, L.; Martínez-Carballo, E.; Merino, A.; Vega, J.A.; Fonturbel, M.T.; Simal-Gandara, J. Polycyclic Aromatic Hydrocarbons in Soil Organic Horizons Depending on the Soil Burn Severity and Type of Ecosystem. Land Degrad. Dev. 2017, 29, 2112–2123. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Tsibart, A.S. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: Factors and features of accumulation. Eurasian Soil Sci. 2013, 46, 28–36. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Wauters, E.; de Hoog, J.; Deutsch, F.; Roekens, E.; Bleux, N.; Berghmans, P.; Van Grieken, R. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos. Environ. 2006, 40, 771–785. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Schmidt, M.W.I.; Schulze, E.-D. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests. Eur. J. Soil Sci. 2004, 56, 417–428. [Google Scholar] [CrossRef]
- Ipatov, V.S.; Mirin, D.M. Description of Phythocoenosis. Metodical Recommendations; St. Petersburg State University press: St. Petersburg, Russia, 2008. (In Russian) [Google Scholar]
- Oyama, M.; Takehara, H. Revised Standard Soil Color Charts, 2nd ed.; Ministry of Agriculture and Forestry: Tokyo, Japan, 1970.
- Madany, M.H.; Swetnam, T.W.; West, N.E. Comparison of two approaches for determining fire dates from tree scars. For. Sci. 1982, 28, 856–861. [Google Scholar]
- Fritts, H.C. Dendroclimatology and dendroecology. Quat. Res. 1971, 4, 419–449. [Google Scholar] [CrossRef]
- Grissino-Mayer, H.A. Manual and tutorial for the proper use of an increment borer. Tree-Ring Res. 2003, 59, 63–79. [Google Scholar]
- Van Reeuwijk, L.P. (Ed.) Procedures for Soil Analysis; Technical Paper 9; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Grünewald, G.; Kaiser, K.; Jahn, R.; Guggenberger, G. Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin—Derived constituents. Org. Geochem. 2006, 37, 1573–1589. [Google Scholar] [CrossRef]
- Cerli, C.; Celi, L.; Kalbitz, K.; Guggenberger, G.; Kaiser, K. Separation of light and heavy organic matter fractions in soil—Testing for proper density cut-off and dispersion level. Geoderma 2012, 170, 403–416. [Google Scholar] [CrossRef]
- Conen, F.; Yakutin, M.V.; Carle, N.; Alewell, C. δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Commun. Mass Spectrom. 2013, 27, 1101–1104. [Google Scholar] [CrossRef]
- Dymov, A.A.; Dubrovsky, Y.A.; Gabov, D.N. Pyrogenic changes in iron-illuvial podzols in the middle taiga of the Komi Republic. Eurasian Soil Sci. 2014, 47, 47–56. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Pies, C.; Yang, Y.; Hofmann, T. Distribution of polycyclic aromatic hydrocarbons (PAHs) in floodplain soils of the Mosel and Saar River. J. Soils Sediments 2007, 7, 216–222. [Google Scholar] [CrossRef]
- Froehner, S.; de Souza, D.B.; Machado, K.; Falcão, F.; Fernandes, C.S.; Bleninger, T.; Neto, D.M. Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources. Int. J. Environ. Sci. Technol. 2012, 9, 327–332. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Mizwar, A.; Trihadiningrum, Y. PAH Contamination in Soils Adjacent to a Coal-Transporting Facility in Tapin District, South Kalimantan, Indonesia. Arch. Environ. Contam. Toxicol. 2015, 69, 62–68. [Google Scholar] [CrossRef]
- Degteva, S.V.; Dubrovskiy, Y.A. Forests in the Basin of the Ilych River in the Pechoro-Ilychsky Reserve; Nauka: St. Petersburg, Russia, 2014; p. 291. (In Russian) [Google Scholar]
- Kukavskaya, E.A.; Buryak, L.; Kalenskaya, O.P.; Zarubin, D.S. Transformation of the ground cover after surface fires and estimation of pyrogenic carbon emissions in the dark-coniferous forests of Central Siberia. Contemp. Probl. Ecol. 2017, 10, 62–70. [Google Scholar] [CrossRef]
- Gyninova, A.B.; Dyrzhinov, Z.D.; Kulikov, A.I.; Gyninova, B.D.; Gonchikov, B.N. Post-pyrogenic Evolution of Sandy Soils under Pine Forests in the Baikal Region. Eurasian Soil Sci. 2019, 52, 414–425. [Google Scholar] [CrossRef]
- Ide, J.; Ohashi, M.; Köster, K.; Berninger, F.; Miura, I.; Makita, N.; Yamase, K.; Palviainen, M.; Pumpanen, J. Molecular composition of soil dissolved organic matter in recently-burned and long-unburned boreal forests. Int. J. Wildland Fire 2020, 29, 541. [Google Scholar] [CrossRef]
- Krasnoshchekov, Y.N.; Cherednikova, Y.S. Postpyrogenic Variability of Forest Soils in the Mountainous Baikal Region; SBRAS Novosibirsk: Novosibirsk, Russia, 2022; (In Russian). [Google Scholar] [CrossRef]
- Gorshkov, V.V.; Stavrova, N.I.; Bakkal, I.Y. Post-fire restoration of forest litter in boreal pine forest. Lesovedenie 2005, 3, 37–45. (In Russian) [Google Scholar]
- Gorbach, N.; Startsev, V.; Mazur, A.; Milanovskiy, E.; Prokushkin, A.; Dymov, A. Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments. Sustainability 2022, 14, 16772. [Google Scholar] [CrossRef]
- Startsev, V.V.; Dymov, A.A.; Prokushkin, A.S. Soils of postpyrogenic larch stands in Central Siberia: Morphology, physicochemical properties, and specificity of soil organic matter. Eurasian Soil Sci. 2017, 50, 885–897. [Google Scholar] [CrossRef]
- Sun, H.; Santalahti, M.; Pumpanen, J.; Köster, K.; Berninger, F.; Raffaello, T.; Jumpponen, A.; Asiegbu, F.O.; Heinonsalo, J. Fungal Community Shifts in Structure and Function across a Boreal Forest Fire Chronosequence. Appl. Environ. Microbiol. 2015, 81, 7869–7880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köster, K.; Aaltonen, H.; Berninger, F.; Heinonsalo, J.; Köster, E.; Ribeiro-Kumara, C.; Sun, H.; Tedersoo, L.; Zhou, X.; Pumpanen, J. Impacts of wildfire on soil microbiome in Boreal environments. Environ. Sci. Health 2021, 22, 100258. [Google Scholar] [CrossRef]
- Duchaufour, P.; Souchier, B. Roles of iron and clay in Genesis of acid soils under a humid, temperate climate. Geoderma 1978, 20, 15–26. [Google Scholar] [CrossRef]
- Sapozhnikov, A.P.; Karpachevskii, L.O.; Il’ina, L.S. Postpyrogenic soil formation in Siberian pine—Broad leaved forests. Lesn. Vestn. 2001, 1, 132–164. (In Russian) [Google Scholar]
- Wang, C.; Houlton, B.Z.; Liu, D.; Hou, J.; Cheng, W.; Bai, E. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 2018, 15, 987–995. [Google Scholar] [CrossRef]
- Lorenz, M.; Derrien, D.; Zeller, B.; Udelhoven, T.; Werner, W.; Thiele-Bruhn, S. The linkage of 13C and 15N soil depth gradients with C:N and O:C stoichiometry reveals tree species effects on organic matter turnover in soil. Biogeochemistry 2020, 151, 203–220. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Eissenstat, D.M.; Trumbore, S.; Freeman, K.; Hobbie, S.E.; Chorover, J.; Oleksyn, J.; Reich, P.B.; Mueller, C.W. Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Glob. Chang. Biol. 2018, 25, 1529–1546. [Google Scholar] [CrossRef]
- Aaltonen, H.; Köster, K.; Köster, E.; Berninger, F.; Zhou, X.; Karhu, K.; Biasi, C.; Bruckman, V.; Palviainen, M.; Pumpanen, J. Forest fires in Canadian permafrost region: The combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 2019, 143, 257–274. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Acton, P.; Fox, J.; Campbell, E.; Rowe, H.; Wilkinson, M. Carbon isotopes for estimating soil decomposition and physical mixing in well-drained forest soils. J. Geophys. Res. Biogeosci. 2013, 118, 1532–1545. [Google Scholar] [CrossRef]
- Golubtsov, V.A. Stable Carbon Isotopic Composition of Organic Matter of the Late Pleistocene and Holocene Soils of the Baikal Region. Eurasian Soil Sci. 2020, 53, 724–738. [Google Scholar] [CrossRef]
- Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 2000, 10, 399–411. [Google Scholar] [CrossRef]
- Stevenson, B.A.; Parfitt, R.L.; Schipper, L.A.; Baisden, W.T.; Mudge, P. Relationship between soil d15N, C/N and N losses across land uses in New Zealand Agriculture. Ecosyst. Environ. 2010, 139, 736–741. [Google Scholar] [CrossRef]
- Liu, W.; Feng, X.; Ning, Y.; Zhang, Q.; Cao, Y.; Zhisheng, A.N. δ13C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid northwestern China. Glob. Chang. Biol. 2005, 11, 1094–1100. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Bu, Z.-J.; Wang, S. Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay. Environ. Sci. Pollut. Res. 2018, 25, 18642–18650. [Google Scholar] [CrossRef]
- Högberg, P. Tansley review No 95—N-15 natural abundance in soil-plant systems. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, B.; Kelly, E.; McDonald, E.; Busacca, A. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 2005, 124, 37–47. [Google Scholar] [CrossRef]
- Boeckx, P.; Paulino, L.; Oyarzún, C.; van Cleemput, O.; Godoy, R. Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isot. Environ. Health Stud. 2005, 41, 249–259. [Google Scholar] [CrossRef]
- Natelhoffer, K.J.; Fry, B. Controls on Natural Nitrogen-15 and Carbon-13 Abundances in Forest Soil Organic Matter. Soil Sci. Soc. Am. J. 1988, 52, 1633–1640. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O. δ13C and δ15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy. Geoderma 2003, 112, 1–29. [Google Scholar] [CrossRef]
- Jenkinson, D.; Coleman, K. The turnover of organic carbon in subsoils. Part 2. Modelling carbon turnover. Eur. J. Soil Sci. 2008, 59, 400–413. [Google Scholar] [CrossRef]
- Nel, J.A.; Craine, J.M.; Cramer, M.D. Correspondence between δ13C and δ15N in soils suggests coordinated fractionation processes for soil C and N. Plant Soil 2017, 423, 257–271. [Google Scholar] [CrossRef]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 2011, 21, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Larjavaara, M.; Berninger, F.; Palviainen, M.; Prokushkin, A.; Wallenius, T. Post-fire carbon and nitrogen accumulation and succession in Central Siberia. Sci. Rep. 2017, 7, 12776. [Google Scholar] [CrossRef]
- Han, C.-L.; Sun, Z.-X.; Shao, S.; Wang, Q.-B.; Libohova, Z.; Owens, P.R. Changes of Soil Organic Carbon after Wildfire in a Boreal Forest, Northeast CHINA. Agronomy 2021, 11, 1925. [Google Scholar] [CrossRef]
- Johnson, D.; Murphy, J.D.; Walker, R.F.; Glass, D.W.; Miller, W.W. Wildfire effects on forest carbon and nutrient budgets. Ecol. Eng. 2007, 31, 183–192. [Google Scholar] [CrossRef]
- Palviainen, M.; Laurén, A.; Pumpanen, J.; Bergeron, Y.; Bond-Lamberty, B.; Larjavaara, M.; Kashian, D.M.; Köster, K.; Prokushkin, A.; Chen, H.Y.H.; et al. Decadal-scale recovery of carbon stocks after wildfires throughout the boreal forests. Glob. Biogeochem. Cycles 2020, 34, e2020GB006612. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Ivanova, G.A.; Conard, S.G.; McRae, D.J.; Ivanov, V.A. Biomass dynamics of central Siberian Scots pine forests following surface fires of varying severity. Int. J. Wildland Fire 2014, 23, 872–886. [Google Scholar] [CrossRef]
- Walker, X.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Santín, C.; Doerr, S.H.; Preston, C.M.; González-Rodríguez, G. Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle. Glob. Chang. Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef] [PubMed]
- Prokushkin, S.G.; Bogdanov, V.V.; Prokushkin, A.S.; Tokareva, I.V. Postpyrogenic restoration of vegetation in larch stands of the cryolithozone in Central Evenkia. Biol. Bull. 2011, 38, 183–190. [Google Scholar] [CrossRef]
- Gonza’lez-Vila, F.J.; Gonza’lez, J.A.; Polvillo, O.; Almendros, G.; Knicker, H. Nature of refractory forms of organic carbon in soils affected by fires. Pyrolytic and spectroscopic approaches. In Forest Fire Research and Wildland Fire Safety; Viegas, D.X., Ed.; Millpress: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
- Krasilnikov, P.V. Stable carbon compounds in soils: Their origin and functions. Eurasian Soil Sci. 2015, 48, 997–1008. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Amelung, W. Dynamics, Chemistry, and Preservation of Organic Matter in Soils. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, England, 2014; Volume 12, pp. 157–215. [Google Scholar]
- Golchin, A.; Oades, J.; Skjemstad, J.; Clarke, P. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy. Soil Res. 1994, 32, 285–309. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Structural and dynamic properties of soil organic-matter as reflected by 13C natural-abundance, pyrolysis mass-spectrometry and solid-state 13C NMR-spectroscopy in density fractions of an oxisol under forest and pasture. Soil Res. 1995, 33, 59–76. [Google Scholar] [CrossRef]
- Helfrich, M.; Ludwig, B.; Buurman, P.; Flessa, H. Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma 2006, 136, 331–341. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.; Lu, Z. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow. Sci. China Ser. D Earth Sci. 2009, 52, 660–668. [Google Scholar] [CrossRef]
- Guareschi, R.F.; Pereira, M.G.; Perin, A. Densimetric fractionation of organic matter in an agricultural chronosequence in no-till areas in the Cerrado region, Brazil. Semin. Ciências Agrárias 2016, 37, 595–610. [Google Scholar] [CrossRef]
- Startsev, V.; Khaydapova, D.; Degteva, S.; Dymov, A. Soils on the southern border of the cryolithozone of European part of Russia (the Subpolar Urals) and their soil organic matter fractions and rheological behavior. Geoderma 2019, 361, 114006. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M.B. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strat. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Startsev, V.V.; Yakovleva, E.V.; Kutyavin, I.N.; Dymov, A.A. Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia. Forests 2022, 13, 1135. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Preston, C.M.; Schmidt, M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Masiello, C. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21, GB3005. [Google Scholar] [CrossRef]
- Masiello, C. New directions in black carbon organic geochemistry. Mar. Chem. 2004, 92, 201–213. [Google Scholar] [CrossRef]
- Hockaday, W.C.; Grannas, A.M.; Kim, S.; Hatcher, P.G. Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org. Geochem. 2006, 37, 501–510. [Google Scholar] [CrossRef]
- García-Falcón, M.S.; Soto-González, B.; Simal-Gándara, J. Evolution of the 15 Concentrations of Polycyclic Aromatic Hydrocarbons in Burnt Woodland Soils. Environ. Sci. Technol. 2006, 40, 759–763. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Pereira, P.; Micaelo, A.C.; Vale, C.; Keizer, J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degrad. Dev. 2019, 30, 2360–2370. [Google Scholar] [CrossRef]
- Chen, R.; Lv, J.; Zhang, W.; Liu, S.; Feng, J. Polycyclic aromatic hydrocarbon (PAH) pollution in agricultural soil in Tianjin, China: A spatio-temporal comparison study. Environ. Earth Sci. 2015, 74, 2743–2748. [Google Scholar] [CrossRef]
- Vasconcelos, U.; de França, F.P.; Oliveira, F.J.S. Removal of high-molecular weight polycyclic aromatic hydrocarbons. Química Nova 2011, 34, 218–221. [Google Scholar] [CrossRef]
- Sihi, D.; Inglett, P.W.; Inglett, K.S. Warming rate drives microbial nutrient demand and enzyme expression during peat decomposition. Geoderma 2018, 336, 12–21. [Google Scholar] [CrossRef]
- Nemirovskaya, I.A. Hydrocarbons in the White Sea: Routes and forms of migration and genesis. Geochem. Int. 2005, 43, 493–504. [Google Scholar]
- Gabov, D.N.; Beznosikov, V.A.; Kondratenok, B.M. Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils. Eurasian Soil Sci. 2007, 40, 256–264. [Google Scholar] [CrossRef]
- Lu, G.-N.; Danga, Z.; Tao, X.-Q.; Yanga, C.; Yi, X.-Y. Estimation of Water Solubility of Polycyclic Aromatic Hydrocarbons Using Quantum Chemical Descriptors and Partial Least Squares. QSAR Comb. Sci. 2008, 27, 618–626. [Google Scholar] [CrossRef]
- Gabov, D.N.; Beznosikov, V.A. Polycyclic aromatic hydrocarbons in tundra soils of the Komi Republic. Eurasian Soil Sci. 2014, 47, 18–25. [Google Scholar] [CrossRef]
- García, R.; Diaz-Somoano, M.; Calvo, M.; López-Antón, M.A.; Suárez, S.; Ruiz, I.S.; Martínez-Tarazona, M.R. Impact of a semi-industrial coke processing plant in the surrounding surface soil. Part II: PAH content. Fuel Process. Technol. 2012, 104, 245–252. [Google Scholar] [CrossRef] [Green Version]
Age from Last Fire, Years | Total Projective Cover (TCP) and Dominant Species of Lower Vegetation Layers |
---|---|
1 | Dwarf-shrub herb layer 3%, Vaccinium vitis-idaea, Calamagrostis sp., Chamaenerion angustifolium Moss-lichen layer single burned residues of lichens |
23 | Dwarf-shrub herb layer 5%, Vaccinium vitis-idaea, Calamagrostis obtusata Moss-lichen layer 50%, Cladonia arbuscula, Cladonia rangiferina, Cladonia crispata, Cladonia cornuta |
45 | Dwarf-shrub herb layer 30%, Vaccinium vitis-idaea, Ledum palustre, Vaccinium uliginosum Moss-lichen layer 90%, Cladonia arbuscula, Cladonia rangiferina, Cladonia crispata, Pleurozium schreberi |
79 | Dwarf-shrub herb layer 25%, Vaccinium vitis-idaea. Calamagrostis obtusata, Diphasium complanatum, Vaccinium myrtillus Moss-lichen layer 80%, Cladonia arbuscula, Cladonia rangiferina, Cladonia crispata, Pleurozium schreberi |
121 | Dwarf-shrub herb layer 5%, Vaccinium myrtillus, Vaccinium vitis-idaea, Ledum palustre, Diphasium complanatum, Empetrum hermaphroditum Moss-lichen layer 90%, Cladonia arbuscula, Cladonia rangiferina |
Site | Horizon | Depth, cm | pH | Ctot. | Ntot. | C/N | WSOC | WSON | Ca2+ | Mg2+ | K+ | Na+ | ∑ | BS, % | CEC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | KCl | g kg−1 | mg g−1 | mmol 100 g−1 | ||||||||||||
1AP | Qpyr | 0–1 | 5.6 | 4.1 | 448 ± 16 | 19.4 ± 2.1 | 27 | 0.46 ± 0.09 | 0.04 ± 0.01 | 10.26 | 0.828 | 1.393 | 0.057 | 12.54 | 23 | 54.0 |
Epyr | 1–6 | 4.7 | 3.4 | 34 ± 5 | 0.93 ± 0.19 | 43 | 0.05 ± 0.01 | 0.005 ± 0.001 | 0.17 | 0.009 | 0.033 | 0.005 | 0.22 | 8 | 2.8 | |
E | 6–17 | 5.8 | 4.7 | 2.7 ± 0.6 | 0.25 ± 0.07 | 13 | 0.03 ± 0.01 | 0.004 ± 0.001 | – | – | 0.001 | – | – | 1 | 0.2 | |
Bs1 | 17–30 | 5.5 | 5.0 | 7.9 ± 1.8 | 0.50 ± 0.10 | 18 | 0.022 ± 0.004 | 0.003 ± 0.001 | – | – | 0.011 | – | 0.01 | 1 | 1.0 | |
Bs2 | 30–50 | 5.8 | 4.9 | 3.0 ± 0.7 | 0.32 ± 0.09 | 11 | 0.020 ± 0.004 | 0.008 ± 0.002 | – | – | 0.016 | 0.004 | 0.04 | – | – | |
B1 | 50–80 | 5.5 | 4.5 | 1.6 ± 0.4 | 0.18 ± 0.05 | 10 | 0.016 ± 0.003 | 0.005 ± 0.001 | 0.03 | – | 0.017 | 0.006 | 0.06 | 5 | 1.2 | |
B2 | 80–100 | 5.8 | 4.8 | 1.21 ± 0.28 | 0.12 ± 0.04 | 12 | 0.025 ± 0.005 | 0.005 ± 0.001 | 0.08 | – | 0.015 | 0.003 | 0.10 | 29 | 0.3 | |
23AP | Oi | 0–1 | 4.7 | 3.6 | 444 ± 16 | 12.9 ± 1.4 | 40 | 5.57 ± 1.11 | 0.19 ± 0.04 | 10.23 | 1.542 | 2.314 | 0.051 | 14.14 | 22 | 63.3 |
Oe,pyr | 1–3 | 4.1 | 3.1 | 375 ± 13 | 11.7 ± 1.3 | 37 | 1.57 ± 0.31 | 0.07 ± 0.01 | 4.14 | 0.430 | 0.997 | 0.062 | 5.63 | 9 | 64.3 | |
Epyr | 3–8 | 4.2 | 3.3 | 29 ± 4 | 0.95 ± 0.19 | 36 | 0.10 ± 0.02 | 0.004 ± 0.001 | 0.08 | 0.022 | 0.027 | 0.010 | 0.14 | 4 | 3.3 | |
E | 8–14 | 4.7 | 3.9 | 5.3 ± 1.2 | 0.23 ± 0.07 | 27 | 0.05 ± 0.01 | – | 0.01 | 0.005 | 0.004 | – | 0.02 | 2 | 1.2 | |
Bs | 14–30 | 5.4 | 4.8 | 9.7 ± 2.2 | 0.51 ± 0.10 | 22 | 0.04 ± 0.01 | – | 0.01 | 0.009 | 0.017 | 0.003 | 0.04 | 3 | 1.3 | |
B1 | 30–75 | 5.5 | 5.2 | 2.3 ± 0.5 | 0.18 ± 0.05 | 15 | 0.025 ± 0.005 | – | 0.03 | 0.011 | 0.018 | 0.004 | 0.06 | 8 | 0.8 | |
B2 | 75–120 | 6.1 | 5.0 | – | – | – | 0.019 ± 0.004 | – | 0.09 | 0.018 | 0.017 | 0.006 | 0.13 | 13 | 1.0 | |
45AP | Oi | 0–3 | 4.6 | 3.6 | 439 ± 15 | 9.3 ± 1.0 | 55 | 5.75 ± 1.15 | 0.26 ± 0.05 | 6.28 | 1.352 | 2.487 | 0.194 | 10.32 | 27 | 38.6 |
Oe, pyr | 3–5 | 4.6 | 3.3 | 357 ± 12 | 9.2 ± 1.0 | 45 | 1.48 ± 0.30 | 0.07 ± 0.01 | 1.17 | 0.215 | 0.434 | 0.120 | 1.94 | 9 | 22.7 | |
Epyr | 5–11 | 4.8 | 3.9 | 27 ± 4 | 0.78 ± 0.16 | 40 | 0.08 ± 0.02 | 0.003 ± 0.001 | 0.03 | – | 0.040 | 0.020 | 0.09 | 5 | 1.8 | |
E | 11–20 | 5.6 | 4.2 | 2.5 ± 0.6 | 0.17 ± 0.05 | 17 | 0.03 ± 0.01 | 0.003 ± 0.001 | 0.03 | – | 0.023 | 0.021 | 0.07 | 31 | 0.2 | |
Bs | 20–45 (50) | 5.7 | 4.8 | 5.2 ± 1.2 | 0.34 ± 0.10 | 18 | 0.020 ± 0.004 | – | 0.08 | – | 0.030 | 0.021 | 0.13 | 22 | 0.6 | |
B1 | 45 (50)–70 | 6.0 | 4.9 | 2.3 ± 0.5 | 0.19 ± 0.06 | 14 | 0.015 ± 0.003 | – | 0.02 | – | 0.018 | 0.016 | 0.05 | – | – | |
B2 | 70–90 | 5.8 | 4.0 | 1.8 ± 0.4 | 0.22 ± 0.06 | 10 | 0.04 ± 0.01 | 0.003 ± 0.001 | 3.53 | 2.080 | 0.219 | 0.097 | 5.92 | 54 | 10.9 | |
B3 | 90–110 | 5.9 | 4.0 | 1.6 ± 0.4 | 0.16 ± 0.05 | 12 | 0.03 ± 0.01 | 0.004 ± 0.001 | 3.92 | 2.270 | 0.188 | 0.101 | 6.48 | 67 | 9.7 | |
79AP | Oi | 0–1 | 4.8 | 3.6 | 395 ± 14 | 10.4 ± 1.1 | 44 | 4.64 ± 0.93 | 0.19 ± 0.04 | 9.75 | 1.128 | 1.883 | 0.033 | 12.80 | 34 | 38.2 |
Oe | 1–2 | 4.6 | 3.6 | 443 ± 16 | 10.1 ± 1.1 | 51 | 3.16 ± 0.63 | 0.17 ± 0.03 | 8.99 | 0.944 | 2.331 | 0.065 | 12.32 | 33 | 37.4 | |
Epyr | 2–6 | 4.7 | 3.5 | 32 ± 5 | 1.01 ± 0.20 | 37 | 0.08 ± 0.02 | 0.004 ± 0.001 | 0.15 | 0.032 | 0.023 | 0.005 | 0.21 | 13 | 1.6 | |
E | 6–16 | 5.0 | 3.9 | 6.2 ± 1.4 | 0.41 ± 0.08 | 18 | 0.038 ± 0.008 | 0.003 ± 0.001 | 0.02 | 0.013 | 0.009 | 0.002 | 0.04 | – | – | |
Bs | 16–35 | 5.4 | 4.6 | 7.4 ± 1.7 | 0.45 ± 0.09 | 19 | 0.053 ± 0.011 | – | 0.04 | 0.027 | 0.021 | 0.016 | 0.10 | 9 | 1.1 | |
B1 | 35–60 | 5.9 | 4.7 | 2.6 ± 0.6 | 0.19 ± 0.06 | 16 | 0.057 ± 0.011 | 0.004 ± 0.001 | 0.09 | 0.042 | 0.019 | 0.014 | 0.17 | 17 | 1.0 | |
B2 | 60–90 | 5.9 | 4.7 | 1.4 ± 0.3 | 0.13 ± 0.04 | 13 | 0.020 ± 0.004 | – | 0.23 | 0.079 | 0.026 | 0.009 | 0.34 | 33 | 1.0 | |
121AP | Oi | 0–2 | 4.4 | 3.2 | 460 ± 16 | 11.2 ± 1.2 | 48 | 2.28 ± 0.46 | 0.15 ± 0.03 | 6.93 | 1.091 | 2.045 | 0.054 | 10.12 | 24 | 41.8 |
Oe, pyr | 2–4 | 4.3 | 3.0 | 442 ± 16 | 8.9 ± 1.0 | 58 | 1.34 ± 0.27 | 0.09 ± 0.02 | 4.10 | 0.507 | 0.613 | 0.040 | 5.26 | 11 | 48.0 | |
Epyr | 4–10 | 4.9 | 3.3 | 11.8 ± 2.7 | 0.42 ± 0.08 | 33 | 0.12 ± 0.02 | 0.006 ± 0.001 | 0.10 | 0.011 | 0.030 | 0.006 | 0.15 | 10 | 1.4 | |
E | 10–20 | 5.1 | 3.8 | 3.1 ± 0.7 | 0.28 ± 0.08 | 13 | 0.040 ± 0.008 | 0.004 ± 0.001 | 0.03 | – | 0.005 | 0.001 | 0.04 | 17 | 0.2 | |
Bs1 | 20–40 | 5.5 | 4.7 | 5.3 ± 1.2 | 0.32 ± 0.09 | 21 | 0.035 ± 0.007 | 0.004 ± 0.001 | 0.02 | 0.001 | 0.028 | 0.007 | 0.06 | 5 | 3.1 | |
Bs2 | 40–60 | 5.6 | 4.6 | 2.6 ± 0.6 | 0.22 ± 0.06 | 19 | 0.022 ± 0.004 | 0.003 ± 0.001 | 0.04 | 0.007 | 0.027 | 0.005 | 0.08 | 7 | 1.3 | |
B | 60–100 | 5.7 | 4.5 | <1.0 | <0.1 | 14 | 0.031 ± 0.006 | 0.007 ± 0.001 | 0.06 | 0.005 | 0.017 | 0.006 | 0.09 | 22 | 1.2 |
Site, Horizons | fPOM < 1.6 | oPOM < 1.6 | MaOM > 1.6 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mass, % | C | N | C/N | Mass, % | C | N | C/N | Mass, % | C | N | C/N | ||
g kg−1 | g kg−1 | g kg−1 | |||||||||||
1AP | Epyr | 2.16 | 358 ± 13 | 7.5 ± 0.8 | 56 | 0.54 | 350 ± 12 | 9.7 ± 1.1 | 42 | 97.74 | 1.40 ± 0.03 | 0.1 | 16 |
E | 0.49 | 44 ± 7 | 1.6 ± 0.3 | 32 | 0.42 | 15 ± 3 | 0.91 ± 0.18 | 19 | 99.07 | 1.0 | 0.1 | 12 | |
23AP | Epyr | 3.75 | 319 ± 11 | 6.4 ± 0.7 | 58 | 0.25 | 512 ± 18 | 10.2 ± 1.1 | 59 | 94.44 | 1.0 | 0.1 | 12 |
E | 0.35 | 293 ± 29 | 5.1 ± 1.0 | 67 | 0.08 | 208 ± 21 | 4 ± 0.8 | 61 | 98.82 | 1.250 ± 0.029 | 0.1 | 15 | |
45AP | Epyr | 1.30 | 379 ± 13 | 5.8 ± 1.2 | 76 | 1.06 | 45 ± 7 | 1.8 ± 0.4 | 29 | 97.20 | 1.60 ± 0.04 | 0.1 | 19 |
E | 0.48 | 42 ± 6 | 1.23 ± 0.25 | 40 | 0.39 | 16 ± 4 | 1.38 ± 0.28 | 14 | 99.41 | 1.0 | 0.1 | 12 | |
79AP | Epyr | 0.73 | 363 ± 13 | 8.3 ± 0.9 | 51 | 0.52 | 385 ± 14 | 9.8 ± 1.1 | 46 | 98.45 | 1.60 ± 0.04 | 0.1 | 19 |
E | 0.4 | 154 ± 15 | 4.1 ± 0.8 | 44 | 0.73 | 30 ± 4 | 1.7 ± 0.3 | 21 | 98.53 | 1.0 | 0.1 | 12 | |
121AP | Epyr | 2.17 | 278 ± 28 | 5.6 ± 1.1 | 58 | 0.54 | 103 ± 10 | 4 ± 0.8 | 30 | 97.99 | 1.0 | 0.1 | 12 |
E | 0.45 | 154 ± 15 | 3.8 ± 0.8 | 47 | 0.08 | 29 ± 4 | 1.6 ± 0.3 | 21 | 99.75 | 1.0 | 0.1 | 12 |
Site | Horizon | Depth, cm | 2-Ring | 3-Ring | 4-Ring | 5-Ring | 6-Ring | ∑PAHs | IPA * | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NP | ACE | FL | PHE | ANT | FLA | PYR | BaA | CHR | BbF | BkF | BaP | DahA | BghiP | IcdP | |||||
1AP | Qpyr | 0–1 | 2007 | – | 97.2 | 424.3 | 59.9 | 36.8 | 58.8 | – | 305.6 | 64.4 | 11.8 | 48.2 | 58.8 | 7.6 | – | 3180.6 | 50.0 |
Epyr | 1–6 | 14 | – | 1.0 | 39.0 | 0.3 | 1.9 | 1.8 | – | 5.1 | – | – | – | – | – | – | 63.5 | ||
23AP | Oe,pyr | 1–3 | 581 | – | 20.4 | 250.4 | 14.0 | 25.8 | 47.2 | – | 42.7 | 11.5 | 5.6 | 10.8 | 13.4 | 1.9 | – | 1024.6 | 41.3 |
Epyr | 3–8 | 4.3 | – | 2.0 | 12.1 | 0.7 | 3.1 | 2.0 | 0.2 | 0.3 | – | – | – | – | – | – | 24.8 | ||
45AP | Oe,pyr | 3–5 | 127 | – | 7.8 | 75.6 | 3.9 | 17.1 | 5.0 | 2.0 | 9.2 | 7.3 | 2.0 | 5.3 | 3.4 | – | – | 266.1 | 13.6 |
Epyr | 5–11 | 6.5 | – | 1.3 | 6.7 | 0.4 | 2.6 | 0.8 | 0.3 | – | – | – | – | – | – | – | 19.6 | ||
79AP | Oe,pyr | 1–2 | 75 | – | 7.0 | 121.3 | 5.2 | 9.5 | 5.4 | 1.5 | 2.5 | 6.1 | 3.2 | 3.6 | 14.7 | 1.8 | – | 256.6 | 10.8 |
Epyr | 2–6 | 8.9 | – | 1.2 | 6.8 | 0.3 | 3.5 | 2.1 | – | – | – | – | – | – | – | – | 23.8 | ||
121AP | Oe,pyr | 2–4 | 191 | – | 9.0 | 94.5 | 3.8 | 8.8 | 4.0 | 0.8 | 22.8 | 62.0 | 0.9 | 5.8 | 29.3 | – | – | 432.7 | 15.7 |
Epyr | 4–10 | 13.2 | – | 0.7 | 7.5 | 1.0 | 1.7 | 0.7 | 0.4 | 2.2 | – | – | – | – | – | – | 27.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymov, A.A.; Startsev, V.V.; Yakovleva, E.V.; Dubrovskiy, Y.A.; Milanovsky, E.Y.; Severgina, D.A.; Panov, A.V.; Prokushkin, A.S. Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray). Fire 2023, 6, 67. https://doi.org/10.3390/fire6020067
Dymov AA, Startsev VV, Yakovleva EV, Dubrovskiy YA, Milanovsky EY, Severgina DA, Panov AV, Prokushkin AS. Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray). Fire. 2023; 6(2):67. https://doi.org/10.3390/fire6020067
Chicago/Turabian StyleDymov, Alexey A., Viktor V. Startsev, Evgenia V. Yakovleva, Yurii A. Dubrovskiy, Evgenii Yu. Milanovsky, Dariy A. Severgina, Alexey V. Panov, and Anatoly S. Prokushkin. 2023. "Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray)" Fire 6, no. 2: 67. https://doi.org/10.3390/fire6020067
APA StyleDymov, A. A., Startsev, V. V., Yakovleva, E. V., Dubrovskiy, Y. A., Milanovsky, E. Y., Severgina, D. A., Panov, A. V., & Prokushkin, A. S. (2023). Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray). Fire, 6(2), 67. https://doi.org/10.3390/fire6020067