Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Energetic Inks
2.3. Characterization and Performance Test
3. Results
3.1. Morphology
3.2. Flame Propagation under Open Conditions
3.3. Flame Temperature
3.4. Ignition Performance of Energetic Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabra, S.; Gharde, S.; Gore, P.M.; Jain, S.; Khire, V.H.; Kandasubramanian, B. Recent trends in nanothermites: Fabrication, characteristics and applications. Nano Express 2020, 1, 032001. [Google Scholar] [CrossRef]
- Yetter, R.A. Progress towards nanoengineered energetic materials. Proc. Combust. Inst. 2020, 38, 57–81. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, J.; Xu, J.; Shen, Y.; Wang, C.-A.; Ye, Y.; Shen, R. Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. Vacuum 2020, 184, 109878. [Google Scholar] [CrossRef]
- Wang, C.A.; Xu, J.B.; Shen, Y.; Wang, Y.T.; Yang, T.L.; Zhang, Z.H.; Li, F.; Shen, R.; Ye, Y.H. Thermodynamics and performance of Al/CuO nanothermite with different storage time. Def. Technol. 2021, 17, 741–747. [Google Scholar] [CrossRef]
- Wu, T.; Singh, V.; Julien, B.; Tenailleau, C.; Estève, A.; Rossi, C. Pioneering insights into the superior performance of titanium as a fuel in energetic materials. Chem. Eng. J. 2023, 453, 139922. [Google Scholar] [CrossRef]
- Huang, S.; Hong, S.; Su, Y.; Jiang, Y.; Fukushima, S.; Gill, T.M.; Yilmaz, N.E.D.; Tiwari, S.; Nomura, K.-I.; Kalia, R.K.; et al. Enhancing combustion performance of nano-Al/PVDF composites with β-PVDF. Combust. Flame 2020, 219, 467–477. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Shi, B.; Li, S.; Yang, R. Effects of particle size on two-phase flow loss in aluminized solid rocket motors. Acta Astronaut. 2019, 159, 33–40. [Google Scholar] [CrossRef]
- Cohen, O.; Michaels, D.; Yavor, Y. Agglomeration in Composite Propellants Containing Different Nano-Aluminum Powders. Propellants Explos. Pyrotech. 2022, 47, e202100320. [Google Scholar] [CrossRef]
- Goetz, V.; Gibot, P.; Spitzer, D. Spark sensitivity and light signature mitigation of an Al/SnO2 nanothermite by the controlled addition of a conductive polymer. Chem. Eng. J. 2021, 427, 131611. [Google Scholar] [CrossRef]
- Valluri, S.K.; Schoenitz, M.; Dreizin, E. Fluorine-containing oxidizers for metal fuels in energetic formulations. Def. Technol. 2019, 15, 1–22. [Google Scholar] [CrossRef]
- Yang, H.; Xu, C.; Wang, W.; Tang, P.; Li, X.; He, S.; Bao, H.; Man, S.; Tang, D.; Li, X.; et al. Underwater self-sustaining combustion and micro-propulsion properties of Al@ FAS-17/PTFE-based direct-writing nanothermite. Chem. Eng. J. 2023, 451, 138720. [Google Scholar] [CrossRef]
- Xiong, K.; Zhang, W.; Wang, Y.; Liu, R.; Yang, S.; Nie, H.; Yan, Q.-L. The effects of fluoropolymers with optimized contents on reactivity and combustion behavior of Al/MxOy nanocomposites. Combust. Flame 2023, 249, 112606. [Google Scholar] [CrossRef]
- Uhlenhake, K.E.; Collard, D.N.; Hoganson, A.C.; Brown, A.D.; Fox, S.; Örnek, M.; Rhoads, J.F.; Son, S.F. Additively Manufactured Micro-and Nano-Al/PVDF Ignition Sensitivity and Burning Characterization. Propellants Explos. Pyrotech. 2022, e202200204. [Google Scholar] [CrossRef]
- Ke, X.; Guo, S.; Zhang, G.; Zhou, X.; Xiao, L.; Hao, G.; Wang, N.; Jiang, W. Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films. J. Mater. Chem. A 2018, 6, 17713–17723. [Google Scholar] [CrossRef]
- Wang, H.; Rehwoldt, M.; Kline, D.J.; Wu, T.; Wang, P.; Zachariah, M.R. Comparison study of the ignition and combustion characteristics of directly-written Al/PVDF, Al/Viton and Al/THV composites. Combust. Flame 2018, 201, 181–186. [Google Scholar] [CrossRef]
- Du, J.; Li, J.; Zhang, Z.Y.; Yang, G.; Li, Y.; Wei, J.Z. Study on influence factors of the combustion temperature of MTV foil-type decoys and their interactions. Sci. Technol. Energetic Mater. 2019, 80, 99–106. [Google Scholar]
- Koch, E.C.; Hahma, A. Metal-fluorocarbon pyrolants. XIV: High density-high performance decoy flare compositions based on ytterbium/polytetrafluoroethylene/viton®. Z. Für Anorg. Und Allg. Chem. 2012, 638, 721–724. [Google Scholar] [CrossRef]
- Feng, B.; Qiu, C.L.; Zhang, T.H.; Hu, Y.F.; Li, H.G.; Xu, B.C. Sensitivity of Al-PTFE upon Low-Speed Impact. Propellants Explos. Pyrotech. 2019, 44, 630–636. [Google Scholar] [CrossRef]
- Tang, L.; Wang, H.; Lu, G.; Zhang, H.; Ge, C. Mesoscale study on the shock response and initiation behavior of Al-PTFE granular composites. Mater. Des. 2021, 200, 109446. [Google Scholar] [CrossRef]
- Uhlenhake, K.E.; Yehia, O.R.; Noel, A.; Terry, B.C.; Örnek, M.; Belal, H.M.; Gunduz, I.E.; Son, S.F. On the Use of Fluorine-Containing Nano-Aluminum Composite Particles to Tailor Composite Solid Rocket Propellants. Propellants Explos. Pyrotech. 2022, 47, e202100370. [Google Scholar] [CrossRef]
- Chen, S.; Yu, H.; Zhang, W.; Shen, R.; Guo, W.; DeLuca, L.T.; Wang, H.; Ye, Y. Sponge-like Al/PVDF films with laser sensitivity and high combustion performance prepared by rapid phase inversion. Chem. Eng. J. 2020, 396, 124962. [Google Scholar] [CrossRef]
- Wang, H.; Shen, J.; Kline, D.J.; Eckman, N.; Agrawal, N.R.; Wu, T.; Wang, P.; Zachariah, M.R. Direct Writing of a 90 wt% Particle Loading Nanothermite. Adv. Mater. 2019, 31, e1806575. [Google Scholar] [CrossRef] [PubMed]
- Sevely, F.; Liu, X.; Wu, T.; Mesnilgrente, F.; Franc, B.; Assie-Souleille, S.; Dollat, X.; Rossi, C. Effect of Process Parameters on the Properties of Direct Written Gas-Generating Reactive Layers. ACS Appl. Polym. Mater. 2021, 3, 3972–3980. [Google Scholar] [CrossRef]
- Shen, J.; Wang, H.; Kline, D.J.; Yang, Y.; Wang, X.; Rehwoldt, M.; Wu, T.; Holdren, S.; Zachariah, M.R. Combustion of 3D printed 90 wt% loading reinforced nanothermite. Combust. Flame 2020, 215, 86–92. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition. J. Phys. Chem. A 2015, 119, 4688–4694. [Google Scholar] [CrossRef]
- Dulmaa, A.; Depla, D. Influence of Impurities on the Front Velocity of Sputter Deposited Al/CuO Thermite Multilayers. Materials 2021, 14, 7224. [Google Scholar] [CrossRef]
- Wang, H.; Biswas, P.; Kline, D.J.; Zachariah, M.R. Flame stand-off effects on propagation of 3D printed 94 wt% nanosized pyrolants loading composites. Chem. Eng. J. 2022, 434, 134487. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, L.; Zhou, X.; Zheng, D.; Zhang, X.; Duan, T.; Nie, F.; Gao, B.; Wang, D. 3D Printing of Micro-Architected Al/CuO-Based Nanothermite for Enhanced Combustion Performance. Adv. Eng. Mater. 2019, 21, 1900825. [Google Scholar] [CrossRef]
- Zhong, L.; Zhou, X.; Huang, X.; Zheng, D.; Mao, Y.; Wang, R.; Wang, D. Combustion/decomposition characteristics of 3D-printed Al/CuO, Al/Fe2O3, Al/Bi2O3 and Al/PTFE hollow filaments. Mater. Chem. Phys. 2021, 271, 124874. [Google Scholar] [CrossRef]
- Murray, A.K.; Novotny, W.A.; Fleck, T.J.; Gunduz, I.E.; Son, S.F.; Chiu, G.; Rhoads, J.F. Selectively-deposited energetic materials: A feasibility study of the piezoelectric inkjet printing of nanothermites. Addit. Manuf. 2018, 22, 69–74. [Google Scholar] [CrossRef]
- Wang, H.; Holdren, S.; Zachariah, M.R. Preparation and combustion of laminated iodine containing aluminum/polyvinylidene fluoride composites. Combust. Flame 2018, 197, 120–126. [Google Scholar] [CrossRef]
- Yang, H.; Huang, C.; Chen, H. Tuning reactivity of nanoaluminum with fluoropolymer via electrospray deposition. J. Therm. Anal. Calorim. 2016, 127, 2293–2299. [Google Scholar] [CrossRef]
- Lyu, J.-Y.; Chen, S.; He, W.; Zhang, X.-X.; Tang, D.-Y.; Liu, P.-J.; Yan, Q.-L. Fabrication of high-performance graphene oxide doped PVDF/CuO/Al nanocomposites via electrospinning. Chem. Eng. J. 2019, 368, 129–137. [Google Scholar] [CrossRef]
- Huang, S.; Pan, M.; Deng, S.; Jiang, Y.; Zhao, J.; Levy-Wendt, B.; Tang, S.K.; Zheng, X. Modified Micro-Emulsion Synthesis of Highly Dispersed Al/PVDF Composites with Enhanced Combustion Properties. Adv. Eng. Mater. 2019, 21, 1801330. [Google Scholar] [CrossRef]
- Rehwoldt, M.C.; Wang, H.; Kline, D.J.; Wu, T.; Eckman, N.; Wang, P.; Agrawal, N.R.; Zachariah, M.R. Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF films. Combust. Flame 2019, 211, 260–269. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Y.; Li, X.; Liu, H.; Yan, W.; Sui, R.; Lu, Q. Temperature and emissivity measurements from combustion of pine wood, rice husk and fir wood using flame emission spectrum. Fuel Process. Technol. 2020, 204, 106423. [Google Scholar] [CrossRef]
- Nie, H.; Tan, L.P.; Pisharath, S.; Hng, H.H. Nanothermite composites with a novel cast curable fluoropolymer. Chem. Eng. J. 2021, 414, 128786. [Google Scholar] [CrossRef]
- Weismiller, M.; Lee, J.; Yetter, R. Temperature measurements of Al containing nano-thermite reactions using multi-wavelength pyrometry. Proc. Combust. Inst. 2011, 33, 1933–1940. [Google Scholar] [CrossRef]
- Huang, C.; Jian, G.; DeLisio, J.B.; Wang, H.; Zachariah, M.R. Electrospray Deposition of Energetic Polymer Nanocomposites with High Mass Particle Loadings: A Prelude to 3D Printing of Rocket Motors. Adv. Eng. Mater. 2014, 17, 95–101. [Google Scholar] [CrossRef]
- Bencomo, J.A.; Iacono, S.T.; McCollum, J. 3D printing multifunctional fluorinated nanocomposites: Tuning electroactivity, rheology and chemical reactivity. J. Mater. Chem. A 2018, 6, 12308–12315. [Google Scholar] [CrossRef]
- McCollum, J.; Morey, A.M.; Iacono, S.T. Morphological and combustion study of interface effects in aluminum-poly (vinylidene fluoride) composites. Mater. Des. 2017, 134, 64–70. [Google Scholar] [CrossRef]
Serial | Before Calcination (mg) | After Calcination (mg) | Active Aluminum Content (%) |
---|---|---|---|
1 | 240 | 392 | 71.3 |
2 | 245 | 403 | 72.5 |
3 | 240 | 393 | 71.7 |
4 | 243 | 401 | 73.1 |
5 | 241 | 397 | 72.8 |
Formulation | Al NPs (mg) | PVDF (mg) | AP (mg) | KP (mg) | DMF (mL) |
---|---|---|---|---|---|
AP | 214 | 500 | 0 | 0 | 5 |
APA-3 | 214 | 479 | 21 | 0 | 5 |
APA-6 | 214 | 458 | 42 | 0 | 5 |
APA-9 | 214 | 437 | 63 | 0 | 5 |
APK-3 | 214 | 479 | 0 | 21 | 5 |
APK-6 | 214 | 458 | 0 | 42 | 5 |
APK-9 | 214 | 437 | 0 | 63 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, X.; Xie, Q.; Su, J.; Hu, M.; Yao, Z. Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites. Fire 2023, 6, 106. https://doi.org/10.3390/fire6030106
Li J, Liu X, Xie Q, Su J, Hu M, Yao Z. Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites. Fire. 2023; 6(3):106. https://doi.org/10.3390/fire6030106
Chicago/Turabian StyleLi, Jingwei, Xuwen Liu, Quanmin Xie, Jiaxin Su, Maocong Hu, and Zhenhua Yao. 2023. "Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites" Fire 6, no. 3: 106. https://doi.org/10.3390/fire6030106
APA StyleLi, J., Liu, X., Xie, Q., Su, J., Hu, M., & Yao, Z. (2023). Effect of Perchlorate on Combustion Properties of Directly-Written Al/PVDF Composites. Fire, 6(3), 106. https://doi.org/10.3390/fire6030106