Effect of Interlayer Materials on Fire Performance of Laminated Glass Used in High-Rise Building: Cone Calorimeter Testing
Abstract
:1. Introduction
2. Materials and Experimental Set-Up
2.1. Materials
2.2. Test Specimens
2.3. Sample Testing Using a Cone Calorimeter
2.4. Data Measurement Details
3. Results and Discussion
3.1. Effect of Glass Pane Thickness
3.2. Effect of Heat Flux
3.3. Effect of Interlayer Materials of Laminated Glasses
3.4. Discussions
3.4.1. Ignition Time
3.4.2. Total Heat Release
3.4.3. Mass Loss Rate
3.4.4. Fire Hazard Assessment
3.4.5. Smoke Hazard
4. Phenomenological Modelling
5. Conclusions
- ➢
- The ignition time of laminated glass is increased to 200 s for 10 mm thick laminated glass, which was 130 s in the case of the 6 mm glass sample. The ignition time is significantly dropped in the case of higher heat exposures (130 s at 75 kW/m2), while it was 570 s at 25 kW/m2 heat flux. The interlayer materials (PVB, SGP, EVA) do not influence the ignition time of the laminated glass, as in all cases with 50 kW/m2 heat flux, the ignition time was 225 s.
- ➢
- The peak heat release rate (pHRR) of laminated glass decreases with the increase in the thickness of the glass pane, and early cracks are observed for thinner glass pane compared to thicker glass panes. The higher pHRR is observed for PVB laminated glass (313.5 kW/m2) and the lower pHRR is observed for EVA laminated glass (105 kW/m2). This variation mainly depends on the glass pane thickness and interlayer materials.
- ➢
- The average total heat release (THR) of EVA laminated glass is significantly low (10.26 MJ/m2) compared to PVB and SGP laminated glasses (42.28 MJ/m2 for PVB interlayer and 42.79 MJ/m2 for SGP interlayer). This could be due to the lower MLR of EVA laminated glass compared to PVB and SGP laminated glass. It indicates that the fire spread for EVA laminated glass will be less compared to PVB and SGP laminated glass.
- ➢
- The cracking time is higher for low-thickness glass panes. A thinner glass pane exposed to a higher heat irradiance can crack earlier than a thicker glass pane. The early cracking exposes the interlayer to heat irradiance so that fire hazards can be increased. EVA samples provide greater stress crack resistance (at 154 s) than the other interlayer samples (87 s and 127 s for SGP and PVB interlayer laminated glass samples respectively). This longer cracking time may be due to EVA’s higher thermal inertia than PVB and SGP.
- ➢
- The values of total smoke production (TSP) and specific extinction area (SEA) were reduced by almost half of the total value when the thickness of the glass panes was increased from 3 mm to 5 mm. EVA laminated glass produced less smoke and exhibited less smoke hazard potential than PVB and SGP laminated glass.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debuyser, M.; Sjöström, J.; Lange, D.; Honfi, D.; Sonck, D.; Belis, J. Behaviour of monolithic and laminated glass exposed to radiant heating. Constr. Build. Mater. 2017, 130, 212–229. [Google Scholar] [CrossRef]
- Bedon, C.; Zhang, X.; Santos, F.; Honfi, D.; Kozłowski, M.; Arrigoni, M.; Figuli, L.; Lange, D. Performance of structural glass facades under extreme loads–Design methods, existing research, current issues and trends. Constr. Build. Mater. 2018, 163, 921–937. [Google Scholar] [CrossRef]
- Martin, M.; Centelles, X.; Sole, A.; Barreneche, C.; Fernández, A.; Cabeza, L. Polymeric interlayer materials for laminated glass: A review. Constr. Build. Mater. 2020, 230, 116897. [Google Scholar] [CrossRef]
- Emmons, H. The needed fire science. In Proceedings of the Fire Safety Science-Proceedings of the First International Symposium; IAFSS: Berkeley, CA, USA, 1986; pp. 33–53. Available online: https://publications.iafss.org/publications/fss/1/33/view/fss_1-33.pdf (accessed on 28 January 2023).
- Babrauskas, V. Glass Breakage in Fires; Fire Science and Technology Inc.: Issaquah, WA, USA, 2011. [Google Scholar]
- Wang, Y.; Hu, J. Performance of laminated glazing under fire conditions. Compos. Struct. 2019, 223, 110903. [Google Scholar] [CrossRef]
- Harada, K.; Enomoto, A.; Uede, K.; Wakamatsu, T. An experimental study on glass cracking and fallout by radiant heat exposure. Fire Saf. Sci. 2000, 6, 1063–1074. [Google Scholar] [CrossRef] [Green Version]
- Shields, T.J.; Silcock, G.; Flood, M. Performance of a single glazing assembly exposed to a fire in the centre of an enclosure. Fire Mater. 2002, 26, 51–75. [Google Scholar] [CrossRef]
- Shields, T.; Silcock, G.; Flood, M. Performance of a single glazing assembly exposed to enclosure corner fires of increasing severity. Fire Mater. 2001, 25, 123–152. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Wen, J.; Sun, J.; Liew, K. Investigation of thermal breakage and heat transfer in single, insulated and laminated glazing under fire conditions. Appl. Therm. Eng. 2017, 125, 662–672. [Google Scholar] [CrossRef] [Green Version]
- Rickard, I.; Spearpoint, M.; Lay, S. The performance of laminated glass subjected to constant heat fluxes related to building fires. Fire Mater. 2021, 45, 283–295. [Google Scholar] [CrossRef]
- MHossain, D.; Hassan, M.; Akl, M.; Pathirana, S.; Rahnamayiezekavat, P.; Douglas, G.; Bhat, T.; Saha, S. Fire Behaviour of Insulation Panels Commonly Used in High-Rise Buildings. Fire 2022, 5, 81. [Google Scholar] [CrossRef]
- Hossain, M.; Hassan, M.; Yuen, A.; He, Y.; Saha, S.; Hittini, W. Flame behaviour, fire hazard and fire testing approach for lightweight composite claddings—A review. J. Struct. Fire Eng. 2021, 12, 257–292. [Google Scholar] [CrossRef]
- Hossain, D.; Hassan, K.; Yuen, A.C.Y.; Wang, C.; Hittini, W. Influencing factors in small-scale fire testing of aluminium composite panels. In Proceedings of the 12th Asia-Oceania Symposium on Fire Science and Technology (AOSFST 2021), Virtual, 7–9 December 2021; The University of Queensland: Brisbane, Australia, 2021. [Google Scholar]
- Hossain, M.D.; Saha, S.; Hassan, M.K.; Yuen, A.C.Y.; Wang, C.; Hittini, W.; George, L.; Wuhrer, R. Testing of aluminium composite panels in a cone calorimeter: A new specimen preparation method. Polym. Test. 2022, 106, 107454. [Google Scholar] [CrossRef]
- ISO 5660-2:3025; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate. BSI Standards Publication: London, UK, 2019.
- Babrauskas, V. Comparative Rates of Heat Release from Five Different Types of Test Apparatuses. J. Fire Sci. 1986, 4, 148–159. [Google Scholar] [CrossRef]
- Ostman, B.; Nussbaum, R.M. Correlation between small-scale rate of heat release and full-scale room flashover for surface linings. Fire Saf. Sci. 1989, 2, 823–832. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.T. Cone calorimeter: Initial experiences of calibration and use. Fire Saf. J. 1994, 22, 67–87. [Google Scholar] [CrossRef]
- An, W.; Jiang, L.; Sun, J.; Liew, K. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J. Therm. Anal. Calorim. 2015, 119, 229–238. [Google Scholar] [CrossRef]
- El Gazi, M.; Sonnier, R.; Giraud, S.; Batistella, M.; Basak, S.; Dumazert, L.; Hajj, R.; El Hage, R. Fire behavior of thermally thin materials in cone calorimeter. Polymers 2021, 13, 1297. [Google Scholar] [CrossRef]
- Klassen, M.S.; Sutula, J.A.; Holton, M.M.; Roby, R.J.; Izbicki, T. Transmission through and breakage of multi-pane glazing due to radiant exposure. Fire Technol. 2006, 42, 79–107. [Google Scholar] [CrossRef]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials—Interpretation of cone calorimeter data. Fire Mater. Int. J. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Xu, Q.; Jin, C.; Jiang, Y. Compare the flammability of two extruded polystyrene foams with micro-scale combustion calorimeter and cone calorimeter tests. J. Therm. Anal. Calorim. 2017, 127, 2359–2366. [Google Scholar] [CrossRef]
- Hirschler, M.M. Flame retardants and heat release: Review of data on individual polymers. Fire Mater. 2015, 39, 232–258. [Google Scholar] [CrossRef] [Green Version]
- Sacristán, M.; Hull, T.R.; Stec, A.A.; Ronda, J.C.; Galià, M.; Cádiz, V. Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: Comparison of additive and reactive approaches. Polym. Degrad. Stab. 2010, 95, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.L.; Apostolakis, G.E. A response surface approximation for the bench-scale peak heat release rate from upholstered furniture exposed to a radiant heat source. Fire Saf. J. 1994, 22, 1–24. [Google Scholar] [CrossRef]
Properties | PVB | SGP | EVA |
---|---|---|---|
Density of interlayer | 915–1070 kg/m3 | 950 kg/m3 | 945–955 kg/m3 |
Density of laminated glass | 2274 | 2242 | 2402 |
Thermal conductivity of interlayers | 0.20 (W/mK) | 0.25 (W/mK) | 0.34 (W/mK) |
Sl No | Sample Label | Glass Pane Thickness (mm) | Interlayer Thickness (mm) | Interlayer Material Type | Heat Flux (kW/m2) | Sample Size, L × B × t (mm) | pHRR (kW/m2) |
---|---|---|---|---|---|---|---|
1 | S6PVB50-1 | 3 | 0.38 | PVB | 50 | 100 × 100 × 6.38 | 237 |
2 | S6PVB50-2 | 3 | 0.38 | PVB | 50 | 100 × 100 × 6.38 | 218 |
3 | S6PVB50-3 | 3 | 0.38 | PVB | 50 | 100 × 100 × 6.38 | 222 |
4 | S10PVB25-1 | 5 | 0.38 | PVB | 25 | 100 × 100 × 10.38 | 44 |
5 | S10PVB25-2 | 5 | 0.38 | PVB | 25 | 100 × 100 × 10.38 | 45 |
6 | S10PVB25-3 | 5 | 0.38 | PVB | 25 | 100 × 100 × 10.38 | 50 |
7 | S10PVB50-1 | 5 | 0.38 | PVB | 50 | 100 × 100 × 10.38 | 156 |
8 | S10PVB50-2 | 5 | 0.38 | PVB | 50 | 100 × 100 × 10.38 | 148 |
9 | S10PVB50-3 | 5 | 0.38 | PVB | 50 | 100 × 100 × 10.38 | 153 |
10 | S10PVB75-1 | 5 | 0.38 | PVB | 75 | 100 × 100 × 10.38 | 203 |
11 | S10PVB75-2 | 5 | 0.38 | PVB | 75 | 100 × 100 × 10.38 | 191 |
12 | S10PVB75-3 | 5 | 0.38 | PVB | 75 | 100 × 100 × 10.38 | 197 |
13 | S12PVB50-1 | 6 | 1.52 | PVB | 50 | 100 × 100 × 13.52 | 236 |
14 | S12PVB50-2 | 6 | 1.52 | PVB | 50 | 100 × 100 × 13.52 | 399 |
15 | S12PVB50-3 | 6 | 1.52 | PVB | 50 | 100 × 100 × 13.52 | 318 |
16 | S12SGP50-1 | 6 | 1.52 | SGP | 50 | 100 × 100 × 13.52 | 289 |
17 | S12SGP50-2 | 6 | 1.52 | SGP | 50 | 100 × 100 × 13.52 | 320 |
18 | S12SGP50-3 | 6 | 1.52 | SGP | 50 | 100 × 100 × 13.52 | 293 |
19 | S12EVA50-1 | 6 | 1.52 | EVA | 50 | 100 × 100 × 13.52 | 103 |
20 | S12EVA50-2 | 6 | 1.52 | EVA | 50 | 100 × 100 × 13.52 | 107 |
21 | S12EVA50-3 | 6 | 1.52 | EVA | 50 | 100 × 100 × 13.52 | 106 |
Test Specimens | S6PVB50 | S10PVB50 | S10PVB25 | S10PVB75 | S12PVB50 | S12SGP50 | S12EVA50 |
---|---|---|---|---|---|---|---|
Time to ignition (s) | 130 | 200 | 570 | 130 | 225 | 225 | 225 |
Time to flameout (s) | 142 | 219 | 598 | 143 | 261 | 243 | 250 |
Total burning time (s) | 435 | 551 | 1413 | 408 | 1208 | 783 | 510 |
pHRR (kW/m2) | 194.45 | 153 | 40.52 | 197 | 313.5 | 289.5 | 105.2 |
Time to pHRR (s) | 171 | 268 | 646 | 185 | 335 | 328 | 296 |
Average THR (MJ/m2) | 11.27 | 11.21 | 8.48 | 11.19 | 42.28 | 42.79 | 10.26 |
Average mass loss rate (g/s·m2) | 0.063 | 0.043 | 0.015 | 0.064 | 0.100 | 0.101 | 0.035 |
Test Specimens | S6PVB50 | S10PVB25 | S10PVB50 | S10PVB75 | S12PVB50 | S12SGP50 | S12EVA50 |
---|---|---|---|---|---|---|---|
FGI | 1.290 | 0.072 | 0.575 | 1.063 | 0.936 | 0.883 | 0.355 |
FPI | 0.576 | 12.284 | 1.311 | 0.661 | 0.718 | 0.777 | 2.138 |
MARHE (kW/m2) | 44.12 | 8.47 | 29.48 | 42.79 | 74.71 | 79.20 | 24.37 |
Test Specimens | S6PVB50 | S10PVB25 | S10PVB50 | S10PVB75 | S12PVB50 | S12SGP50 | S12EVA50 |
---|---|---|---|---|---|---|---|
TSP (m2) | 0.821 | 2.364 | 0.545 | 1.009 | 3.146 | 3.898 | 0.401 |
Avg. SEA (m2/kg) | 175.395 | 710.07 | 76.63 | 175.913 | 221.93 | 254.84 | 56.073 |
CO yield (kg/kg) | 0.097 | 0.051 | 0.104 | 0.126 | 0.088 | 0.087 | 0.127 |
CO2 yield (kg/kg) | 1.563 | 1.600 | 1.729 | 1.606 | 1.734 | 1.836 | 1.735 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.K.; Hasnat, M.R.; Loh, K.P.; Hossain, M.D.; Rahnamayiezekavat, P.; Douglas, G.; Saha, S. Effect of Interlayer Materials on Fire Performance of Laminated Glass Used in High-Rise Building: Cone Calorimeter Testing. Fire 2023, 6, 84. https://doi.org/10.3390/fire6030084
Hassan MK, Hasnat MR, Loh KP, Hossain MD, Rahnamayiezekavat P, Douglas G, Saha S. Effect of Interlayer Materials on Fire Performance of Laminated Glass Used in High-Rise Building: Cone Calorimeter Testing. Fire. 2023; 6(3):84. https://doi.org/10.3390/fire6030084
Chicago/Turabian StyleHassan, Md Kamrul, Md Rayhan Hasnat, Kai Png Loh, Md Delwar Hossain, Payam Rahnamayiezekavat, Grahame Douglas, and Swapan Saha. 2023. "Effect of Interlayer Materials on Fire Performance of Laminated Glass Used in High-Rise Building: Cone Calorimeter Testing" Fire 6, no. 3: 84. https://doi.org/10.3390/fire6030084
APA StyleHassan, M. K., Hasnat, M. R., Loh, K. P., Hossain, M. D., Rahnamayiezekavat, P., Douglas, G., & Saha, S. (2023). Effect of Interlayer Materials on Fire Performance of Laminated Glass Used in High-Rise Building: Cone Calorimeter Testing. Fire, 6(3), 84. https://doi.org/10.3390/fire6030084