Review of Structural Fire Hazards, Challenges, and Prevention Strategies
Abstract
:1. Introduction
2. Causes of Fire in Structures
3. Impact of Structural Fires
4. Gaps in Fire Management between Developed and Developing Countries
5. Strategies for Minimizing Building Fires—Mitigation
5.1. The Popularization of Fire Safety
5.2. The Use of Active and Passive Fire Safety Systems
5.3. Building Fire Design and Fire Safety Codes
5.4. Development of Fire-Safe Building Materials
5.5. Integration of Artificial Intelligence (AI) to Predict Impending Fires
6. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manzello, S.L.; Blanchi, R.; Gollner, M.J.; Gorham, D.; McAllister, S.; Pastor, E.; Planas, E.; Reszka, P.; Suzuki, S. Summary of workshop large outdoor fires and the built environment. Fire Saf. J. 2018, 100, 76–92. [Google Scholar] [CrossRef] [Green Version]
- Galiana-Martín, L. Spatial Planning Experiences for Vulnerability Reduction in the Wildland-Urban Interface in Mediterranean European Countries. Eur. Countrys. 2017, 9, 577–593. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, A.I.; Hadden, R.M.; Bisby, L.A. A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technol. 2019, 55, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Östman, B.; Brandon, D.; Frantzich, H. Fire safety engineering in timber buildings. Fire Saf. J. 2017, 91, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Bwalya, A. An Overview of Design Fires for Building Compartments. Fire Technol. 2008, 44, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.L.; Lopez, A.D. Global Health Statistics: A Compendium of Incidence, Prevalence and Mortality Estimates for over 200 Conditions; Harvard School of Public Health on behalf of the World Health Organization and the World Bank: Cambridge, MA, USA, 1996; Volume 2, Available online: https://apps.who.int/iris/handle/10665/41848 (accessed on 13 November 2022).
- Brushlinsky, N.; Sokolov, S.; Wagner, P. Center of Fire Statistics World Fire Statistics. 2022. Available online: https://www.ctif.org/sites/default/files/2022-08/CTIF_Report27_ESG.pdf (accessed on 5 January 2023).
- Rahman, M.S.; Islam, B.; Ahmed, B. An Overview on Rapid Urbanization and Induced Disaster Risk Factors in Bangladesh. World Town Planning Day; Bangladesh Institute of Planners: Dhaka, Bangladesh, 2012; pp. 56–64. [Google Scholar] [CrossRef]
- Aliyu, A.A.; Amadu, L. Urbanization, cities, and health: The challenges to Nigeria—A review. Ann. Afr. Med. 2017, 16, 149. Available online: https://www.annalsafrmed.org/text.asp?2017/16/4/149/216708 (accessed on 16 December 2022). [CrossRef]
- Liu, D.; Xu, Z.; Wang, Z.; Zhou, Y.; Fan, C. Estimation of effective coverage rate of fire station services based on real-time travel times. Fire Saf. J. 2021, 120, 103021. [Google Scholar] [CrossRef]
- Sanni-Anibire, M.O.; Mahmoud, A.S.; Hassanain, M.A.; Salami, B.A. A risk assessment approach for enhancing construction safety performance. Saf. Sci. 2020, 121, 15–29. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Naser, M.Z. Designing steel bridges for fire safety. J. Constr. Steel Res. 2019, 156, 46–53. [Google Scholar] [CrossRef]
- China Sees 13.6% Drop in Deaths from Fire in 2020. 2021. Available online: http://english.www.gov.cn/statecouncil/ministries/202101/22/content_WS600ac5b3c6d0f725769445a9.html (accessed on 16 December 2022).
- McKee, M. Grenfell Tower fire: Why we cannot ignore the political determinants of health. BMJ 2017, 357, j2966. [Google Scholar] [CrossRef]
- Ansfield, B. The Broken Windows of the Bronx: Putting the Theory in Its Place. Am. Q. 2020, 72, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, G. The Economics of Fire Protection; Routledge: Oxford, UK, 2002. [Google Scholar] [CrossRef]
- Durai, J.S.; Vigneshwaran, R. Fire System Analysis and Optimization of Suitable Fire Control System. Environ. Sci. Eng. 2022, 1, 14–16. [Google Scholar] [CrossRef]
- Zheng, A.; Garis, L.; Pike, I. Fire Severity Outcome Comparison of Apartment Buildings Constructed from Combustible and Non-Combustible Construction Materials. Fire Technol. 2022, 58, 1815–1825. [Google Scholar] [CrossRef]
- Ivanov, M.L.; Chow, W.-K. Fire safety in modern indoor and built environment. Indoor Built Environ. 2023, 32, 3–8. [Google Scholar] [CrossRef]
- Bullock, J.A.; Haddow, G.D.; Coppola, D.P. Mitigation, Prevention, and Preparedness. In Introduction to Homeland Security; Elsevier: Amsterdam, The Netherlands, 2013; pp. 435–494. [Google Scholar] [CrossRef]
- Billington, M.J.; Copping, A.; Ferguson, A.G. Means of Escape from Fire; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kiggundu, M.N. Integrating strategic management tasks into implementing agencies: From firefighting to prevention. World Dev. 1996, 24, 1417–1430. [Google Scholar] [CrossRef]
- Walls, R.S.; Cicione, A.; Messerschmidt, B.; Almand, K. Africa: Taking fire safety forwards. Fire Mater. 2021, 45, 999–1007. [Google Scholar] [CrossRef]
- Farooq, S.H.; Maqbool, S.; Haseeb, S. Structural Fire Safety Measures in Developing Countries: Pakistan—A Case Study. Int. J. Eng. Adv. Technol. 2014, 1, 2249–8958. [Google Scholar]
- Rahardjo, H.A.; Prihanton, M. The most critical issues and challenges of fire safety for building sustainability in Jakarta. J. Build. Eng. 2020, 29, 101133. [Google Scholar] [CrossRef]
- Addai, E.K.; Tulashie, S.K.; Annan, J.-S.; Yeboah, I. Trend of Fire Outbreaks in Ghana and Ways to Prevent These Incidents. Saf. Health Work. 2016, 7, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Walls, R.; Olivier, G.; Eksteen, R. Informal settlement fires in South Africa: Fire engineering overview and full-scale tests on “shacks”. Fire Saf. J. 2017, 91, 997–1006. [Google Scholar] [CrossRef]
- Robbins, A.P.; Wade, C. Residential New Zealand Fire Statistics: Part 1 Initial Analysis. BRANZ Study Report. 2010, p. 222. Available online: https://d39d3mj7qio96p.cloudfront.net/media/documents/SR222_Residential_New_Zealand_fire_statistics_-_part_1_-_initial_analysis.pdf (accessed on 16 December 2022).
- Ahrens, M.; Maheshwari, R. Home Structure Fires; Fire Analysis and Research Division: Quincy, MA, USA, 2013. [Google Scholar]
- Spearpoint, M.; Hopkin, C. Household cooking oil use and its bearing on fire safety. J. Fire Sci. 2021, 39, 265–284. [Google Scholar] [CrossRef]
- Spearpoint, M.; Hopkin, C.; Hopkin, D. Modelling the thermal radiation from kitchen hob fires. J. Fire Sci. 2020, 38, 377–394. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Bundy, M.; Hamins, A. The character of residential cooktop fires. J. Fire Sci. 2021, 39, 142–163. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Wang, Z.; Lee, K.Y.; Kim, S.C.; Bundy, M.; Fernandez, M.; Hamins, A. Why are cooktop fires so hazardous? Fire Saf. J. 2021, 120, 103070. [Google Scholar] [CrossRef]
- Ouache, R.; Chhipi-Shrestha, G.; Hewage, K.; Sadiq, R. An integrated risk assessment and prediction framework for fire ignition sources in smart-green multi-unit residential buildings. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 1262–1295. [Google Scholar] [CrossRef]
- Baker, D.E. Unvented Portable Kerosene Heaters—Safety Considerations. 2022. Available online: https://hdl.handle.net/10355/91186 (accessed on 15 January 2023).
- Ahrens, M. Smoking and fire. Am. J. Public Health 2004, 94, 1076–1077. [Google Scholar] [CrossRef]
- Statista Research Department. World Consumption of Cigarettes 1880–2020. 2022. Available online: https://www.statista.com/statistics/279577/global-consumption-of-cigarettes-since-1880/ (accessed on 30 November 2022).
- Anderson, A.; Janssens, M. A Multi-national Survey of Low-Energy and Smoking Materials Ignition Fires. Fire Technol. 2016, 52, 1709–1735. [Google Scholar] [CrossRef]
- Warda, L.; Tenenbein, M.; Moffatt, M.E.K. House fire injury prevention update. Part I. A review of risk factors for fatal and non-fatal house fire injury. Inj. Prev. 1999, 5, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Leistikow, B.N.; Martin, D.C.; Milano, C.E. Fire Injuries, Disasters, and Costs from Cigarettes and Cigarette Lights: A Global Overview. Prev. Med. 2000, 31, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babrauskas, V. Research on Electrical Fires: The State of the Art. Fire Saf. Sci. 2008, 9, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Vigil, M.; Echeverría, T.B. Elderly at Home: A Case for the Systematic Collection and Analysis of Fire Statistics in Spain. Fire Technol. 2019, 55, 2215–2244. [Google Scholar] [CrossRef]
- Lu, S.; Liang, C.; Song, W.; Zhang, H. Frequency-size distribution and time-scaling property of high-casualty fires in China: Analysis and comparison. Saf. Sci. 2013, 51, 209–216. [Google Scholar] [CrossRef]
- Matsui, H.; Oniki, A. Risk Management of Electrical Fires in China; Easy Chair: Manchester, UK, 2019. [Google Scholar]
- Shea, J.J. Identifying causes for certain types of electrically initiated fires in residential circuits. Fire Mater. 2011, 35, 19–42. [Google Scholar] [CrossRef]
- Kim, J.; Youm, S.; Shan, Y.; Kim, J. Analysis of Fire Accident Factors on Construction Sites Using Web Crawling and Deep Learning Approach. Sustainability 2021, 13, 11694. [Google Scholar] [CrossRef]
- House Fire Statistics. The Zebra. 2023. Available online: https://www.thezebra.com/resources/research/house-fire-statistics/ (accessed on 10 February 2023).
- Kodur, V.; Kumar, P.; Rafi, M.M. Fire hazard in buildings: Review, assessment and strategies for improving fire safety. PSU Res. Rev. 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Kumar, P.; Kodur, V. Modeling the behavior of load bearing concrete walls under fire exposure. Constr. Build. Mater. 2017, 154, 993–1003. [Google Scholar] [CrossRef]
- Gao, Y. Research on monitoring method of smoke particles diffusion path in high—Rise building fire. Environ. Sci. Manag. 2020, 45, 131–135. (In Chinese) [Google Scholar]
- The Cause of the Fire in a High-Rise Building in Dalian Has Been Identified—Seetao. 2019. Available online: https://www.seetao.com/details/112114.html (accessed on 15 September 2021).
- Hsueh-kuang, H.; Wang, K. Death Toll in Kaohsiung Fire Climbs to 46; Injuries Reach 41. Available online: https://archive.ph/20211014104204/https://focustaiwan.tw/society/202110140015 (accessed on 14 October 2021).
- Nadu, T. HomeTamil Nadu13 Years after 94 Children Died in Tamil Nadu Fire, All Convicts Freed This Article Is from Aug 11, 2017 13 Years after 94 Children Died in Tamil Nadu Fire, All Convicts Freed. 2017. Available online: https://www.ndtv.com/tamil-nadu-news/kumbakonam-fire-mishap-madras-high-court-suspends-conviction-sentence-of-7-1736263 (accessed on 1 October 2020).
- Dutta, A. Stephen Court Fire Toll Rises to 43. India. 2021. Available online: https://www.thehindu.com/news/national/Stephen-Court-fire-toll-rises-to-43/article16627837.ece (accessed on 4 November 2020).
- Fire at South Korea 33-Level Tower Block Brought under Control. Ulsan. 2020. Available online: https://www.bbc.com/news/world-asia-54470378 (accessed on 10 October 2020).
- High-Rise in Brazil Collapses after Massive Fire. The Two-Way. 2018. Available online: https://www.npr.org/sections/thetwo-way/2018/05/01/607313901/high-rise-in-brazil-collapses-after-massive-fire (accessed on 30 November 2022).
- Garimella, P.P. Planned relocation: An unusual case for developed countries. Curr. Res. Environ. Sustain. 2022, 4, 100177. [Google Scholar] [CrossRef]
- Meijer, F.; Visscher, H. Measuring the Evolution of Online Handling of Building Permits in Europe. RCIS COBRA 2009. The Construction and Building Research Conference of the Royal Institution of Chartered Surveyors. 2009, pp. 1328–1338. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5e828b299dccbde187ad804ae7cc566e9c80e634 (accessed on 30 November 2022).
- Babrauskas, V.V. Some Neglected Areas in Fire Safety Engineering. Fire Sci. Technol. 2013, 32, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Challands, N. The Relationships Between Fire Service Response Time and Fire Outcomes. Fire Technol. 2010, 46, 665–676. [Google Scholar] [CrossRef]
- National Ten-Year Fire Data Warning. Xinhua Network. 2021. Available online: http://www.news.cn/datanews/20211015/C99905849A6000016872423D822F8320/c.html (accessed on 29 November 2022).
- Mathers, C.D.; Boerma, T.; Fat, D.M. Global and regional causes of death. Br. Med. Bull. 2009, 92, 7–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Beshir, M.; Hadden, R.; Cicione, A.; Krajcovic, M.; Gibson, L.; Rush, D. Laboratory experiment of fire spread between two informal settlement dwellings. Int. J. Therm. Sci. 2022, 171, 107195. [Google Scholar] [CrossRef]
- Bangladesh Fire: Thousands of Shacks Destroyed in Dhaka Slum. 2019. Available online: https://www.bbc.com/news/world-asia-49382682 (accessed on 30 November 2022).
- Kahanji, C.; Walls, R.S.; Cicione, A. Fire spread analysis for the 2017 Imizamo Yethu informal settlement conflagration in South Africa. Int. J. Disaster Risk Reduct. 2019, 39, 101146. [Google Scholar] [CrossRef]
- Quiroz, N.F.; Walls, R.; Cicione, A. Developing a framework for fire investigations in informal settlements. Fire Saf. J. 2021, 120, 103046. [Google Scholar] [CrossRef]
- Walls, R.S.; Eksteen, R.; Kahanji, C.; Cicione, A. Appraisal of fire safety interventions and strategies for informal settlements in South Africa. Disaster Prev. Manag. Int. J. 2019, 28, 343–358. [Google Scholar] [CrossRef]
- Marrion, C.E. More effectively addressing fire/disaster challenges to protect our cultural heritage. J. Cult. Herit. 2016, 20, 746–749. [Google Scholar] [CrossRef]
- Drotárová, J.; Kačíková, D.; Kelemen, M.; Bodor, M. The possibilities of using blended learning in fire safety education. CBU Int. Conf. Proc. 2016, 4, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Bhagat, K.K.; Liou, W.-K.; Chang, C.-Y. A cost-effective interactive 3D virtual reality system applied to military live firing training. Virtual Real. 2016, 20, 127–140. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, X.Z.; Guan, H.; Chen, C.; Ren, A.Z. A virtual reality based fire training simulator with smoke hazard assessment capacity. Adv. Eng. Softw. 2014, 68, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Suo, J.; Chen, J.; Liu, X.; Gao, L. Design and Implementation of Fire Safety Education System on Campus based on Virtual Reality Technology. In Proceedings of the 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), Prague, Czech Republic, 3–6 September 2017; pp. 1297–1300. [Google Scholar]
- Burke, R. Fire Protection: Systems and Response; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Guo, T.-N.; Fu, Z.-M. The fire situation and progress in fire safety science and technology in China. Fire Saf. J. 2007, 42, 171–182. [Google Scholar] [CrossRef]
- Lim, J.; Baalisampang, T.; Garaniya, V.; Abbassi, R.; Khan, F.; Ji, J. Numerical analysis of performances of passive fire protections in processing facilities. J. Loss. Prevent. Proc. 2019, 62, 103970. [Google Scholar] [CrossRef]
- Mróz, K.; Hager, I.; Korniejenko, K. Material Solutions for Passive Fire Protection of Buildings and Structures and Their Performances Testing. Procedia Eng. 2016, 151, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Festag, S. Analysis of the effectiveness of the smoke alarm obligation—Experiences from practice. Fire Saf. J. 2021, 119, 103263. [Google Scholar] [CrossRef]
- Qiu, X.; Xi, T.; Sun, D.; Zhang, E.; Li, C.; Peng, Y.; Wei, J.; Wang, G. Fire Detection Algorithm Combined with Image Processing and Flame Emission Spectroscopy. Fire Technol. 2018, 54, 1249–1263. [Google Scholar] [CrossRef]
- Kuznetsov, G.; Zhdanova, A.; Volkov, R.; Strizhak, P. Optimizing firefighting agent consumption and fire suppression time in buildings by forming a fire feedback loop. Process. Saf. Environ. Protect. 2022, 165, 754–775. [Google Scholar] [CrossRef]
- Rodrigues, E.E.C.; Rodrigues, J.P.C.; Filho, L.C.P.d.S. Comparative study of building fire safety regulations in different Brazilian states. J. Build. Eng. 2017, 10, 102–108. [Google Scholar] [CrossRef]
- Sun, X.; Cai, N.; Zhang, W. Discussing the development of domestic and foreign fire protection technical regulation and fire protection technical standard systems. J. Saf. Sci. Resil. 2022, 4, 26–29. [Google Scholar] [CrossRef]
- Buchanan, A.H.; Abu, A.K. Structural Design for Fire Safety, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-0-470-97289-2. [Google Scholar]
- Chu, G.; Sun, J. Decision analysis on fire safety design based on evaluating building fire risk to life. Saf. Sci. 2008, 46, 1125–1136. [Google Scholar] [CrossRef]
- The Skyscraper Centre. The Global Tall Building Database of the CTBUH. Available online: http://skyscrapercenter.com/ (accessed on 10 December 2022).
- Fletcher, I.A. Tall Concrete Buildings Subject to Vertically Moving Fires: A Case Study Approach. 2009. Available online: http://hdl.handle.net/1842/3199 (accessed on 10 December 2022).
- Cowlard, A.; Bittern, A.; Abecassis-Empis, C.; Torero, J. Fire Safety Design for Tall Buildings. Procedia Eng. 2013, 62, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Guo, W. Discussion on the Fire Safety Design of a High-Rise Building. Procedia Eng. 2012, 45, 685–689. [Google Scholar] [CrossRef]
- Kathar, A.; Barhate, Y.; Chakhale, J.; Thakur, P.D.K. Fabrication of Fire Fighting System for High Rise Building. Int. J. Res. Publ. Rev. 2022, 3, 684–687. [Google Scholar]
- Maluk, C.; Woodrow, M.; Torero, J.L. The potential of integrating fire safety in modern building design. Fire Saf. J. 2017, 88, 104–112. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.; Rismanchi, B.; Ng, H.; Hasan, M.; Metselaar, H.; Muraza, O.; Aditiya, H. A review on insulation materials for energy conservation in buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Mensah, R.A.; Xu, Q.; Asante-Okyere, S.; Jin, C.; Bentum-Micah, G. Correlation analysis of cone calorimetry and microscale combustion calorimetry experiments. J. Therm. Anal. Calorim. 2019, 136, 589–599. [Google Scholar] [CrossRef]
- McKenna, S.T.; Jones, N.; Peck, G.; Dickens, K.; Pawelec, W.; Oradei, S.; Harris, S.; Stec, A.A.; Hull, T.R. Fire behaviour of modern façade materials—Understanding the Grenfell Tower fire. J. Hazard. Mater. 2019, 368, 115–123. [Google Scholar] [CrossRef]
- McLaggan, M.; Hidalgo, J.; Osorio, A.; Heitzmann, M.; Carrascal, J.; Lange, D.; Maluk, C.; Torero, J. Towards a better understanding of fire performance assessment of façade systems: Current situation and a proposed new assessment framework. Constr. Build. Mater. 2021, 300, 124301. [Google Scholar] [CrossRef]
- Peng, L.; Ni, Z.; Huang, X. Review on the Fire Safety of Exterior Wall Claddings in High-rise Buildings in China. Procedia Eng. 2013, 62, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Renner, J.S.; Babu, K.; Neisiany, R.E.; Försth, M.; Sas, G.; Das, O. A review of sustainable and environment-friendly flame retardants used in plastics. Polym. Test. 2022, 108, 107511. [Google Scholar] [CrossRef]
- Caetano, H.; Laím, L.; Santiago, A.; Durães, L.; Shahbazian, A. Development of Passive Fire Protection Mortars. Appl. Sci. 2022, 12, 2093. [Google Scholar] [CrossRef]
- Charbonnet, J.A.; Weber, R.; Blum, A. Flammability standards for furniture, building insulation and electronics: Benefit and risk. Emerg. Contam. 2020, 6, 432–441. [Google Scholar] [CrossRef]
- Banu, D.; Feldman, D.; Haghighat, F.; Paris, J. Energy-Storing Wallboard: Flammability Tests. J. Mater. Civ. Eng. 1998, 10, 98–105. [Google Scholar] [CrossRef]
- Kererekes, Z.; Lublóy, É.; Elek, B.; Restás, Á. Standard fire testing of chimney linings from composite materials. J. Build. Eng. 2018, 19, 530–538. [Google Scholar] [CrossRef]
- He, D.; Wang, Z.; Liu, J. A Survey to Predict the Trend of AI-able Server Evolution in the Cloud. IEEE Access 2018, 6, 10591–10602. [Google Scholar] [CrossRef]
- Krittanawong, C.; Bomback, A.S.; Baber, U.; Bangalore, S.; Messerli, F.H.; Tang, W.H.W. Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension. Curr. Hypertens. Rep. 2018, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Srinivasan, R.S. A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models. Renew. Sustain. Energy Rev. 2017, 75, 796–808. [Google Scholar] [CrossRef]
- Agrawal, A.; Gans, J.S.; Goldfarb, A. Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction. J. Econ. Perspect. 2019, 33, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Manu, D.S.; Thalla, A.K. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater. Appl. Water Sci. 2017, 7, 3783–3791. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Rainie, L. Artificial Intelligence and the Future of Humans. 2018, Volume 10. Available online: https://www.pewresearch.org/internet/2018/12/10/artificial-intelligence-and-the-future-of-humans/ (accessed on 10 December 2022).
- Asante-Okyere, S.; Xu, Q.; Mensah, R.A.; Jin, C.; Ziggah, Y.Y. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA). Thermochim. Acta 2018, 667, 79–92. [Google Scholar] [CrossRef]
- Jiang, L.; Mensah, R.A.; Asante-Okyere, S.; Försth, M.; Xu, Q.; Ziggah, Y.Y.; Restás, Á.; Berto, F.; Das, O. Developing an artificial intelligent model for predicting combustion and flammability properties. Fire Mater. 2021, 46, 830–842. [Google Scholar] [CrossRef]
- Mensah, R.A.; Jiang, L.; Asante-Okyere, S.; Xu, Q.; Jin, C. Comparative evaluation of the predictability of neural network methods on the flammability characteristics of extruded polystyrene from microscale combustion calorimetry. J. Therm. Anal. Calorim. 2019, 138, 3055–3064. [Google Scholar] [CrossRef]
- Tam, W.C.; Fu, E.Y.; Li, J.; Huang, X.; Chen, J.; Huang, M.X. A spatial temporal graph neural network model for predicting flashover in arbitrary building floorplans. Eng. Appl. Artif. Intell. 2022, 115, 105258. [Google Scholar] [CrossRef]
- Ostrak, A. Predicting House Fires with Machine Learning. 2020. Available online: https://cyber.ee/resources/news/predicting-house-fires-with-machine-learning/ (accessed on 11 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C. Review of Structural Fire Hazards, Challenges, and Prevention Strategies. Fire 2023, 6, 137. https://doi.org/10.3390/fire6040137
Zhang C. Review of Structural Fire Hazards, Challenges, and Prevention Strategies. Fire. 2023; 6(4):137. https://doi.org/10.3390/fire6040137
Chicago/Turabian StyleZhang, Chenting. 2023. "Review of Structural Fire Hazards, Challenges, and Prevention Strategies" Fire 6, no. 4: 137. https://doi.org/10.3390/fire6040137
APA StyleZhang, C. (2023). Review of Structural Fire Hazards, Challenges, and Prevention Strategies. Fire, 6(4), 137. https://doi.org/10.3390/fire6040137