Terrestrial Laser Scan Metrics Predict Surface Vegetation Biomass and Consumption in a Frequently Burned Southeastern U.S. Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Design, Data Collection, and Processing
2.3. Vegetation and Fuel Mass Classes
2.4. Terrestrial Lidar Processing
2.5. Linear Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vegetation or Fuel Category | Description |
---|---|
Woody Live | Live material from evergreen and deciduous broadleaf shrubs or trees aboveground (i.e., stems, leaves, flowers, buds, etc.) |
Now Dead Woody Vegetation | Only in post-burn sampling to classify pre-burn woody live stems that were partially consumed by the prescribed fire and the aboveground plant was clearly dead (aka top-killed) |
Woody Litter | Downed leaf and litter material from evergreen and deciduous broadleaf shrubs or trees detached from its source (i.e., leaves, flowers, buds, etc.) |
1 h | Downed dead branches, twigs, and other small woody pieces that are severed from their original source of growth, and dead woody species that is still standing and attached to the ground and is less than 0.25 inch (0.64 cm) in diameter |
10 h | Downed, dead branches, twigs, and other small woody pieces that are severed from their original source of growth, female cones (i.e., megastrobilus, seed cone, or ovulate cone) from non-Pinus species, and dead woody species that are still standing and attached to the ground and is 0.25 inch to 1.0 inch (0.64 to 2.54 cm) in diameter |
100 h | Downed, dead tree and shrub boles, large limbs, and other woody pieces that are severed from their original source of growth and dead woody species that is still standing and attached to the ground and is 1.0 inch to 3.0 inch (2.54 to 7.6 cm) in diameter |
1000 h | Downed, dead tree and shrub boles, large limbs, and other woody pieces that are severed from their original source of growth and is 3.0 inch to 8 inch (7.6 cm to 20.3 cm) in diameter. Note that no 1000 h fuels were found in our plots for this study. |
Pinecones | Intact female cones (i.e., megastrobilus, seed cone, or ovulate cone) from Pinus species |
Conifer Litter | Needle from conifers other than Pinus species and downed woody material from conifer species that is too small to fit into the 1-h fuel category (ex: paper-thin pieces of bark, male pollen cones (aka microstrobilus), and pinecone fragments) |
Pine Needles | Downed needles from Pinus species with long or short needles |
Fine Vegetation | Live and dead material from bunchgrass species, wiregrass species, other graminoids, forbs, vines, and conifer seedlings |
Appendix B
Total | Total No. FWD | Total 0–30 cm | Total 0–30 cm No. FWD | Fine Fuels | FWD | Total 0–30 cm Post |
---|---|---|---|---|---|---|
318.6 | 278.2 | 318.6 | 278.2 | 278.2 | 40.4 | 84.08 |
1124.92 | 1011.4 | 1075.04 | 961.52 | 945.96 | 113.52 | 178.92 |
470.16 | 432.36 | 466.08 | 428.28 | 404.44 | 37.8 | 43.52 |
942 | 854.8 | 942 | 854.8 | 854.8 | 87.2 | 101.12 |
787.68 | 787.68 | 782.2 | 782.2 | 787.68 | 0 | 16.76 |
490.68 | 472.96 | 490.68 | 472.96 | 472.96 | 17.72 | 95.16 |
553.2 | 531.76 | 550.32 | 528.88 | 521.68 | 21.44 | 23.84 |
565.28 | 320.72 | 565.28 | 320.72 | 320.72 | 244.56 | 110.4 |
622.16 | 533.24 | 618.72 | 529.8 | 521.96 | 88.92 | 219.12 |
739.16 | 725.88 | 685.72 | 672.44 | 555.36 | 13.28 | 169.84 |
1396.52 | 1020.12 | 1341.52 | 965.12 | 911.12 | 376.4 | 57.64 |
529.08 | 529.08 | 529.08 | 529.08 | 527.24 | 0 | 507.92 |
853.08 | 848.04 | 783.64 | 778.6 | 739.48 | 5.04 | 46.16 |
1122.36 | 630.76 | 1007.96 | 516.36 | 449.56 | 491.6 | 310.08 |
1373.76 | 876.28 | 1373.76 | 876.28 | 856.16 | 497.48 | 92.8 |
1318.32 | 1281.68 | 1150.44 | 1113.8 | 1003.8 | 36.64 | 207.16 |
1727.36 | 1434.68 | 1526.12 | 1233.44 | 1077.72 | 292.68 | 201.56 |
1648 | 1600.6 | 1256.72 | 1209.32 | 1020.44 | 47.4 | 213.04 |
467.52 | 406.36 | 461.44 | 400.28 | 353.04 | 61.16 | 302.6 |
1178.92 | 1131.12 | 1167.08 | 1119.28 | 1131.12 | 47.8 | 91.6 |
1276.64 | 806.28 | 1188.64 | 718.28 | 621.92 | 470.36 | 414.28 |
756.2 | 620.32 | 702.24 | 566.36 | 620.32 | 135.88 | 129.8 |
1512.44 | 983.6 | 1378.16 | 849.32 | 772.16 | 528.84 | 1027.36 |
434.6 | 434.6 | 434.6 | 434.6 | 423.52 | 0 | 122.16 |
591.92 | 527.72 | 591.92 | 527.72 | 516.24 | 64.2 | 386.96 |
266.16 | 266.16 | 243.44 | 243.44 | 266.16 | 0 | 165.04 |
913.56 | 612.6 | 900 | 599.04 | 564.56 | 300.96 | 483.2 |
694.28 | 642.32 | 693.24 | 641.28 | 642.32 | 51.96 | 332.16 |
881.68 | 737.24 | 881.68 | 737.24 | 737.24 | 144.44 | 661.72 |
495.8 | 495.8 | 389.88 | 389.88 | 314.28 | 0 | 146 |
614.36 | 572.28 | 586.64 | 544.56 | 572.28 | 42.08 | 224.88 |
820.84 | 660.92 | 820.84 | 660.92 | 660.92 | 159.92 | 205.64 |
707.52 | 707.52 | 707.52 | 707.52 | 707.52 | 0 | 15.4 |
1575.24 | 1175.08 | 1520.8 | 1120.64 | 1114.44 | 400.16 | 512.4 |
1217.8 | 1197.28 | 1033.44 | 1012.92 | 800.76 | 20.52 | 279.44 |
1244.08 | 1074.24 | 1244.08 | 1074.24 | 1068.6 | 169.84 | 442.52 |
1212.76 | 1123 | 1185.44 | 1095.68 | 988.28 | 89.76 | 282.24 |
1134.36 | 1060.12 | 1037.4 | 963.16 | 842.68 | 74.24 | 378.04 |
938.92 | 889.4 | 938.92 | 889.4 | 889.4 | 49.52 | 544.56 |
639.04 | 531.76 | 639.04 | 531.76 | 531.76 | 107.28 | 709.2 |
264.04 | 264.04 | 264.04 | 264.04 | 261.72 | 0 | 190.8 |
Appendix C
Portion of Scan | Metric Type | Voxelized/Point Cloud | No. of Metrics | Metric | Description |
---|---|---|---|---|---|
By stratum | General | Point Cloud | 5 | PD (1 to 5), e.g., PD1 | Point density (PD) in strata 1 to 5 |
By stratum | General | Point Cloud | 5 | % PD (1 to 5) | % of points in strata 1 to 5 |
By stratum | General | Point Cloud | 5 | TGI (1 to 5) | Triangular Greenness Index (TGI) in strata 1 to 5 |
By stratum | General | Point Cloud | 5 | VARI (1 to 5) | Visual Atmospheric Resistance Index (VARI) in strata 1 to 5 |
By stratum | Height statistic | Point Cloud | 5 | Mean Ht (1 to 5) | Mean height (Ht) in strata 1 to 5 |
By stratum | Height statistic | Point Cloud | 5 | Median Ht (1 to 5) | Median height in strata 1 to 5 |
By stratum | Height statistic | Point Cloud | 5 | SD Ht (1 to 5) | Standard deviation (SD) of heights in strata 1 to 5 |
By stratum | Height statistic | Point Cloud | 5 | Sk Ht (1 to 5) | Skewness of heights (Sk) in strata 1 to 5 |
By stratum | Height statistic | Point Cloud | 5 | Ku Ht (1 to 5) | Kurtosis (Ku) of heights in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | % Occluded (1 to 5) | % of non-ground points occluded in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | % Space (1 to 5) | % of unreturned non-ground points (true empty space) in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | Mean Prop Non-occluded (1 to 5) | Mean proportion(Prop) of occluded and no returns in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | SD Prop Non-occluded (1 to 5) | SD of proportion of occluded and no returns in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | Sk Prop Non-occluded (1 to 5) | Sk of proportion of occluded and no returns in strata 1 to 5 |
By stratum | Space and Occlusion | Point Cloud | 5 | Ku Prop Non-occluded (1 to 5) | Ku of proportion of occluded and no returns in strata 1 to 5 |
0–3 m | General | Voxelized | 2 | PD CWD (10 or 1000) | Standardized surface fuel PD classified as 1–10 h or 100–1000 h fuels |
0–3 m | General | Voxelized | 2 | TDI CWD (10 or 1000) | Standardized surface fuel TDI classified as 1–10 h or 100–1000 h fuels |
0–3 m | General | Voxelized | 2 | VARI CWD (10 or 1000) | Standardized surface fuel VARI classified as 1–10 h or 100–1000 h fuels |
0–3 m | Height statistic | Voxelized | 2 | Mean CWD (10 or 1000) | Standardized surface fuel mean height classified as 1–10 h or 100–1000 h fuels |
0–3 m | Height statistic | Voxelized | 2 | Median CWD (10 or 1000) | Standardized surface fuel median height classified as 1–10 h or 100–1000 h fuels |
0–3 m | Height statistic | Voxelized | 2 | SD CWD (10 or 1000) | Standardized surface fuel SD of height classified as 1–10 h or 100–1000 h fuels |
0–3 m | Height statistic | Voxelized | 2 | Sk CWD (10 or 1000) | Standardized surface fuel Sk of height classified as 1–10 h or 100–1000 h fuels |
0–3 m | Height statistic | Voxelized | 2 | Ku CWD (10 or 1000) | Standardized surface fuel Ku of height classified as 1–10 h or 100–1000 h fuels |
Entire scan | General | Point Cloud | 1 | Ground PD | Number of TLS points classified as ground |
Entire scan | General | Point Cloud | 1 | Veg PD | Number of TLS points not classified as ground |
Entire scan | General | Point Cloud | 1 | % Ground | % of points classified as ground |
Entire scan | General | Point Cloud | 1 | TGI | TGI |
Entire scan | General | Point Cloud | 1 | VARI | VARI |
Entire scan | General | Point Cloud | 1 | % Above Mean Ht | % of non-ground points above mean height |
Entire scan | General | Point Cloud | 1 | % Above 2SD Mean Ht | % of non-ground points 2SD above mean height |
Entire scan | General | Voxelized | 1 | Total Volume | PD of standardized point cloud |
Entire scan | General | Voxelized | 1 | TGI Voxels | TGI of standardized point cloud |
Entire scan | General | Voxelized | 1 | VARI Voxels | VARI of standardized point cloud |
Entire scan | Height statistic | Point Cloud | 1 | Maximum Ht | Maximum height of TLS points in the entire scan |
Entire scan | Height statistic | Point Cloud | 1 | Mean Ht | Mean height of TLS points in the entire scan |
Entire scan | Height statistic | Point Cloud | 1 | SD Ht | SD of TLS point heights in the entire scan |
Entire scan | Height statistic | Point Cloud | 1 | Sk Ht | Sk of TLS point heights in the entire scan |
Entire scan | Height statistic | Point Cloud | 1 | Ku Ht | Ku of TLS point heights in the entire scan |
Entire scan | Height statistic | Voxelized | 1 | Mean Ht Voxels | Mean height of standardized point cloud |
Entire scan | Height statistic | Voxelized | 1 | Median Ht Voxels | Median height of standardized point cloud |
Entire scan | Height statistic | Voxelized | 1 | SD Ht Voxels | SD of heights in standardized point cloud |
Entire scan | Height statistic | Voxelized | 1 | Sk Ht Voxels | Sk of heights in standardized point cloud |
Entire scan | Height statistic | Voxelized | 1 | Ku Ht Voxels | Ku of heights in standardized point cloud |
Entire scan | Space and Occlusion | Point Cloud | 1 | % Total Unreturned Points | % of unreturned points overall |
Entire scan | Space and Occlusion | Point Cloud | 1 | % Area Occluded Points | % of possible non-ground points from occluded |
Entire scan | Space and Occlusion | Point Cloud | 1 | % True Open Space | % of unreturned non-ground points (true empty space) |
Entire scan | Space and Occlusion | Point Cloud | 1 | Mean Prop Non-occluded | Mean proportion of true points that are not occluded |
Entire scan | Space and Occlusion | Point Cloud | 1 | SD Prop Non-occluded | SD of proportion of occluded and no returns in entire scan |
Entire scan | Space and Occlusion | Point Cloud | 1 | Sk Prop Non-occluded | Sk of proportion of occluded and no returns in entire scan |
Entire scan | Space and Occlusion | Point Cloud | 1 | Ku Prop Non-occluded | Ku of proportion of occluded and no returns in entire scan |
Entire scan | Quantiles | Point Cloud | 19 | Ht 5th Q to Ht 95th Q | Height at 5th to 95th quantiles in intervals of 5 |
Entire scan | Quantiles | Point Cloud | 9 | % PD 10th Q to % PD 90th Q | % of points below 10th to 90th quantile of max ht in intervals of 10 |
Entire scan | Trees | Voxelized | 1 | Total BA | Total basal area |
Entire scan | Trees | Voxelized | 1 | Mean BA | Mean basal area |
Entire scan | Trees | Voxelized | 1 | Mean Tree Ht | Mean tree height |
Entire scan | Trees | Voxelized | 1 | Mean DBH | Mean diameter at breast height (DBH) of all detected trees > 4 cm DBH |
Entire scan | Trees | Voxelized | 1 | No. Trees | Number of trees detected |
Entire scan | Trees | Voxelized | 1 | Max Tree Ht | Maximum tree height |
Entire scan | Trees | Voxelized | 1 | SD Tree Hts | SD of tree heights |
Entire scan | Trees | Voxelized | 1 | Mean Canopy Base Ht | Mean tree canopy base height |
0–3 m | General | Voxelized | 1 | Surface VD | Standardized surface fuel VD |
0–3 m | General | Voxelized | 1 | Surface TGI | Standardized surface fuel TGI |
0–3 m | General | Voxelized | 1 | Surface VARI | Standardized surface fueVARI |
0–3 m | Height statistic | Voxelized | 1 | Surface Mean Ht | Standardized surface fuel mean height |
0–3 m | Height statistic | Voxelized | 1 | Surface Median Ht | Standardized surface fuel median height |
0–3 m | Height statistic | Voxelized | 1 | Surface SD ht | Standardized surface fuel SD of height |
0–3 m | Height statistic | Voxelized | 1 | Surface Sk ht | Standardized surface fuel Sk of height |
0–3 m | Height statistic | Voxelized | 1 | Surface Ku ht | Standardized surface fuel Ku of height |
Appendix D
Linear Model “Total”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l2_per + s_l2_prop_sk + s_l2_prop_ku + s_l5_zero_per + vox_l1_mean + fuel0_3l1_cnt, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−109.59 | −26.96 | −10.31 | 15.90 | 134.81 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | −3.300 × 103 | 8.601 × 102 | −3.837 | 0.000516 *** |
h_l2_per | −1.093 × 101 | 2.386 × 100 | −4.581 | 5.97 × 10−5 *** |
s_l2_prop_sk | −5.363 × 101 | 9.818 × 100 | −5.462 | 4.31 × 10−6 *** |
s_l2_prop_ku | 1.673 × 100 | 2.906 × 10−1 | 5.757 | 1.78 × 10−6 *** |
s_l5_zero_per | 3.379 × 101 | 8.947 × 100 | 3.777 | 0.000611 *** |
vox_l1_mean | 6.566 × 101 | 9.710 × 100 | 6.762 | 8.99 × 10−8 *** |
fuel0_3l1_cnt | 1.522 × 10−4 | 3.072 × 10−5 | 4.954 | 1.97 × 10−5 *** |
--- | ||||
Signif. codes: 0 ‘***’ | ||||
Residual standard error: 57.33 on 34 degrees of freedom | ||||
Multiple R-squared: 0.7167, | Adjusted R-squared: 0.6668 | |||
F-statistic: 14.34 on 6 and 34 DF, | p-value: 4.464 × 10−8 | |||
Linear Model “Total no FWD”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l2_cnt + h_l2_per + h_l5_cnt + h_zq65 + s_l1_prop_ku + s_l3_zero_per, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−76.143 | −32.682 | 1.856 | 17.751 | 154.496 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | 1.730 × 103 | 4.161 × 102 | 4.158 | 0.000206 *** |
h_l2_cnt | 1.567 × 10−3 | 2.869 × 10−4 | 5.463 | 4.30 × 10−6 *** |
h_l2_per | −5.622 × 101 | 1.114 × 101 | −5.048 | 1.49 × 10−5 *** |
h_l5_cnt | −1.591 × 10−4 | 3.570 × 10−5 | −4.457 | 8.60 × 10−5 *** |
h_zq65 | 1.821 × 101 | 3.136 × 100 | 5.806 | 1.54 × 10−6 *** |
s_l1_prop_ku | 6.610 × 10−1 | 1.810 × 10−1 | 3.651 | 0.000869 *** |
s_l3_zero_per | −1.585 × 101 | 4.304 × 100 | −3.683 | 0.000796 *** |
--- | ||||
Signif. codes: 0 ‘***’ | ||||
Residual standard error: 52.38 on 34 degrees of freedom | ||||
Multiple R-squared: 0.6509, | Adjusted R-squared: 0.5893 | |||
F-statistic: 10.57 on 6 and 34 DF, | p-value: 1.306 × 10−6 | |||
Linear Model “Total 0–30 cm”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l2_per + s_l2_prop_sk + s_l2_prop_ku + s_l5_zero_per + vox_l1_mean + fuel0_3l1_cnt, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−92.231 | −26.795 | −8.902 | 20.862 | 113.172 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | −2.903 × 103 | 7.364 × 102 | −3.942 | 0.000383 *** |
h_l2_per | −1.063 × 101 | 2.043 × 100 | −5.202 | 9.41 × 10−6 *** |
s_l2_prop_sk | −4.573 × 101 | 8.406 × 100 | −5.440 | 4.60 × 10−6 *** |
s_l2_prop_ku | 1.406 × 100 | 2.488 × 10−1 | 5.652 | 2.44 × 10−6 *** |
s_l5_zero_per | 2.966 × 101 | 7.660 × 100 | 3.872 | 0.000466 *** |
vox_l1_mean | 6.107 × 101 | 8.313 × 100 | 7.346 | 1.64 × 10−8 *** |
fuel0_3l1_cnt | 1.325 × 10−4 | 2.630 × 10−5 | 5.039 | 1.53 × 10−5 *** |
--- | ||||
Signif. codes: 0 ‘***’ | ||||
Residual standard error: 49.09 on 34 degrees of freedom | ||||
Multiple R-squared: 0.7388, | Adjusted R-squared: 0.6927 | |||
F-statistic: 16.03 on 6 and 34 DF, | p-value: 1.191 × 10−8 | |||
Linear Model “Total 0–30 cm no FWD”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_zq90 + h_zpcum3 + s_l1_prop_ku + s_l2_prop_sd + vox_l1_std + h100_1000_l1_kurt, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−108.20 | −20.29 | −4.60 | 23.29 | 70.88 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | 62.0884 | 78.1550 | 0.794 | 0.43246 |
h_zq90 | −41.8273 | 9.2926 | −4.501 | 7.54 × 10−5 *** |
h_zpcum3 | −5.3703 | 0.9913 | −5.418 | 4.93 × 10−6 *** |
s_l1_prop_ku | 0.7080 | 0.1559 | 4.542 | 6.68 × 10−5 *** |
s_l2_prop_sd | 5.1922 | 1.0570 | 4.912 | 2.23 × 10−5 *** |
vox_l1_std | 134.6971 | 23.2959 | 5.782 | 1.65 × 10−6 *** |
hr100_1000_l1_kurt | 5.9487 | 1.7120 | 3.475 | 0.00142 ** |
--- | ||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ | ||||
Residual standard error: 42.04 on 34 degrees of freedom | ||||
Multiple R-squared: 0.693, | Adjusted R-squared: 0.6389 | |||
F-statistic: 12.79 on 6 and 34 DF, | p-value: 1.646 × 10−7 | |||
Linear Model “FWD”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l2_std + h_l2_skew + h_l5_std + h_zq90 + s_l5_zero_per + vox_l1_mean, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−51.358 | −17.052 | 0.497 | 16.804 | 51.966 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | −2111.760 | 440.337 | −4.796 | 3.16 × 10−5 *** |
h_l2_std | 4973.248 | 836.842 | 5.943 | 1.02 × 10−6 *** |
h_l2_skew | 142.621 | 24.245 | 5.882 | 1.22 × 10−6 *** |
h_l5_std | 55.306 | 15.496 | 3.569 | 0.001092 ** |
h_zq90 | −24.575 | 7.321 | −3.357 | 0.001951 ** |
s_l5_zero_per | 13.728 | 3.980 | 3.449 | 0.001519 ** |
vox_l1_mean | 33.299 | 8.331 | 3.997 | 0.000326 *** |
--- | ||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 | ||||
Residual standard error: 26.99 on 34 degrees of freedom | ||||
Multiple R-squared: 0.6064, | Adjusted R-squared: 0.537 | |||
F-statistic: 8.732 on 6 and 34 DF, | p-value: 8.808 × 10−6 | |||
Linear Model “Fine Fuels”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l2_cnt + h_l2_per + h_zq30 + h_zq65 + h_zpcum1 + h_zpcum6, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−77.99 | −17.87 | −6.53 | 19.78 | 79.50 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | 9.332 × 101 | 1.525 × 102 | 0.612 | 0.544687 |
h_l2_cnt | 7.504 × 10−4 | 1.473 × 10−4 | 5.094 | 1.30 × 10−5 *** |
h_l2_per | −3.065 × 101 | 5.777 × 100 | −5.305 | 6.89 × 10−6 *** |
h_zq30 | 5.573 × 101 | 1.226 × 101 | 4.546 | 6.60 × 10−5 *** |
h_zq65 | 1.257 × 101 | 3.383 × 100 | 3.716 | 0.000725 *** |
h_zpcum1 | 6.512 × 100 | 1.534 × 100 | 4.245 | 0.000160 *** |
h_zpcum6 | −4.474 × 100 | 1.111 × 100 | −4.025 | 0.000301 *** |
-- | ||||
Signif. codes: 0 ‘***’ 0.001 | ||||
Residual standard error: 37.11 on 34 degrees of freedom | ||||
Multiple R-squared: 0.7119, | Adjusted R-squared: 0.661 | |||
F-statistic: 14 on 6 and 34 DF, | p-value: 5.892 × 10−8 | |||
Linear Model “Total 0–30 cm Post”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_zq45 + h_zpcum8 + h_zpcum9 + MaxTH + fuel0_3l1_mean + fine_l1_skew, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−55.006 | −24.121 | 0.059 | 19.535 | 59.856 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | −4217.699 | 837.654 | −5.035 | 1.55 × 10−5 *** |
h_zq45 | 4.168 | 1.359 | 3.066 | 0.004235 ** |
h_zpcum8 | −10.555 | 1.919 | −5.500 | 3.84 × 10−6 *** |
h_zpcum9 | 49.000 | 9.678 | 5.063 | 1.42 × 10−5 *** |
MaxTH | 8.961 | 1.613 | 5.554 | 3.27 × 10−6 *** |
fuel0_3l1_mean | 106.125 | 29.205 | 3.634 | 0.000912 *** |
fine_l1_skew | 57.714 | 9.423 | 6.125 | 5.93 × 10−7 *** |
Signif. Codes: 0 ‘***’ 0.001 ‘**’ | ||||
Residual standard error: 33.68 on 34 degrees of freedom | ||||
Multiple R-squared: 0.6696, | Adjusted R-squared: 0.6113 | |||
F-statistic: 11.48 on 6 and 34 DF, | p-value: 5.406 × 10−7 | |||
Linear Model “Total 0–30 cm Pre and Post”: | ||||
Call: | ||||
lm(formula = focus_predictor[, 1] ~ h_l1_median + h_zq15 + s_l5_0_per + s_l5_prop_mn + vox_l1_mean + fine_l1_tgi, data = coef) | ||||
Residuals: | ||||
Min | 1Q | Median | 3Q | Max |
−133.710 | −31.799 | 2.207 | 35.582 | 128.602 |
Coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | −103.825 | 38.383 | −2.705 | 0.00845 ** |
h_l1_median | 533.180 | 127.835 | 4.171 | 8.07 × 10−5 *** |
h_zq15 | 58.415 | 12.354 | 4.729 | 1.04 × 10−5 *** |
s_l5_0_per | 1453.159 | 351.144 | 4.138 | 9.05 × 10−5 *** |
s_l5_prop_mn | −1314.891 | 316.767 | −4.151 | 8.66 × 10−5 *** |
vox_l1_mean | 30.487 | 4.977 | 6.125 | 3.84 × 10−8 *** |
fine_l1_tgi | 790.205 | 288.305 | 2.741 | 0.00766 ** |
--- | ||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 | ||||
Residual standard error: 59.51 on 75 degrees of freedom | ||||
Multiple R-squared: 0.6912, | Adjusted R-squared: 0.6665 | |||
F-statistic: 27.98 on 6 and 75 DF, | p-value: <2.2 × 10−16 |
References
- Archibald, S.; Lehmann, C.E.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.-L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.J.; Hiers, J.K.; Callaham, M.A.; Mitchell, R.J.; Jack, S.B. Interactions among overstory structure, seedling life-history traits, and fire in frequently burned neotropical pine forests. AMBIO A J. Hum. Environ. 2008, 37, 542–547. [Google Scholar] [CrossRef]
- Francos, M.; Úbeda, X. Prescribed fire management. Curr. Opin. Environ. Sci. Health 2021, 21, 100250. [Google Scholar] [CrossRef]
- Keane, R.E. Describing wildland surface fuel loading for fire management: A review of approaches, methods and systems. Int. J. Wildland Fire 2012, 22, 51–62. [Google Scholar] [CrossRef]
- Parsons, R.A.; Mell, W.E.; McCauley, P. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior. Ecol. Model. 2011, 222, 679–691. [Google Scholar] [CrossRef]
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2013, 23, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Linn, R.R.; Goodrick, S.; Brambilla, S.; Brown, M.J.; Middleton, R.S.; O’Brien, J.J.; Hiers, J.K. QUIC-fire: A fast-running simulation tool for prescribed fire planning. Environ. Model. Softw. 2020, 125, 104616. [Google Scholar] [CrossRef]
- Linn, R.; Reisner, J.; Colman, J.J.; Winterkamp, J. Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 2002, 11, 233–246. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Sieg, C.H.; Linn, R.R.; Mell, W.; Parsons, R.A.; Ziegler, J.P.; Hiers, J.K. Advancing the science of wildland fire dynamics using process-based models. Fire 2018, 1, 32. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.C.; Opperman, T.S. LANDFIRE—A national vegetation/fuels data base for use in fuels treatment, restoration, and suppression planning. For. Ecol. Manag. 2013, 294, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the Fuel Characteristic Classification System-Quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; O’Brien, J.J.; Goodrick, S.L.; Linn, R.R.; Skowronski, N.S.; Hiers, J.K. Vegetation’s influence on fire behavior goes beyond just being fuel. Fire Ecol. 2022, 18, 1–10. [Google Scholar] [CrossRef]
- Campbell-Lochrie, Z.; Walker-Ravena, C.; Gallagher, M.; Skowronski, N.; Mueller, E.V.; Hadden, R.M. Investigation of the role of bulk properties and in-bed structure in the flow regime of buoyancy-dominated flame spread in porous fuel beds. Fire Saf. J. 2021, 120, 103035. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; O’Brien, J.J.; Mitchell, R.J.; Cropper, W.P.; Hiers, J.K.; Grunwald, S.; Grego, J.; Fernandez-Diaz, J.C. Linking complex forest fuel structure and fire behaviour at fine scales. Int. J. Wildland Fire 2012, 21, 882–893. [Google Scholar] [CrossRef]
- Gallagher, M.R.; Cope, Z.; Giron, D.R.; Skowronski, N.S.; Raynor, T.; Gerber, T.; Linn, R.R.; Hiers, J.K. Reconstruction of the Spring Hill Wildfire and Exploration of Alternate Management Scenarios Using QUIC-Fire. Fire 2021, 4, 72. [Google Scholar] [CrossRef]
- Ritter, S.M.; Hoffman, C.M.; Battaglia, M.A.; Stevens-Rumann, C.S.; Mell, W.E. Fine-scale fire patterns mediate forest structure in frequent-fire ecosystems. Ecosphere 2020, 11, e03177. [Google Scholar] [CrossRef]
- Hiers, Q.A.; Loudermilk, E.L.; Hawley, C.M.; Hiers, J.K.; Pokswinski, S.; Hoffman, C.M.; O’Brien, J.J. Non-Destructive Fuel Volume Measurements Can Estimate Fine-Scale Biomass across Surface Fuel Types in a Frequently Burned Ecosystem. Fire 2021, 4, 36. [Google Scholar] [CrossRef]
- Hendricks, J.J.; Wilson, C.A.; Boring, L.R. Foliar litter position and decomposition in a fire-maintained longleaf pine—Wiregrass ecosystem. Can. J. For. Res. 2002, 32, 928–941. [Google Scholar] [CrossRef]
- Carter, M.C.; Darwin Foster, C. Prescribed burning and productivity in southern pine forests: A review. For. Ecol. Manag. 2004, 191, 93–109. [Google Scholar] [CrossRef]
- White, D.L.; Waldrop, T.A.; Jones, S.M. Forty years of prescribed burning on the Santee fire plots: Effects on understory vegetation. In Fire and the Environment: Ecological and Cultural Perspectives; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1990; pp. 51–59. [Google Scholar]
- Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Grego, J.M.; Loudermilk, E.L. The wildland fuel cell concept: An approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests. Int. J. Wildland Fire 2009, 18, 315–325. [Google Scholar] [CrossRef]
- Kreye, J.K.; Hiers, J.K.; Varner, J.M.; Hornsby, B.; Drukker, S.; O’brien, J.J. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 2018, 48, 1331–1342. [Google Scholar] [CrossRef]
- Hanula, J.L.; Ulyshen, M.D.; Wade, D.D. Impacts of Prescribed Fire Frequency on Coarse Woody Debris Volume, Decomposition and Termite Activity in the Longleaf Pine Flatwoods of Florida. Forests 2012, 3, 317–331. [Google Scholar] [CrossRef]
- Ulyshen, M.D.; Horn, S.; Pokswinski, S.; McHugh, J.V.; Hiers, J.K. A comparison of coarse woody debris volume and variety between old-growth and secondary longleaf pine forests in the southeastern United States. For. Ecol. Manag. 2018, 429, 124–132. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Y.; Goodrick, S.; Hornsby, B.; Schardt, J. The contribution of duff consumption to fire emissions and air pollution of the Rough Ridge Fire. Int. J. Wildland Fire 2019, 28, 993–1004. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J.; Mitchell, R.J.; Singhania, A.; Fernandez, J.C.; Cropper, W.P.; Slatton, K.C. Ground-based LIDAR: A novel approach to quantify fine-scale fuelbed characteristics. Int. J. Wildland Fire 2009, 18, 676–685. [Google Scholar] [CrossRef] [Green Version]
- Greaves, H.E.; Vierling, L.A.; Eitel, J.U.; Boelman, N.T.; Magney, T.S.; Prager, C.M.; Griffin, K.L. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens. Environ. 2015, 164, 26–35. [Google Scholar] [CrossRef]
- Sankey, J.B.; Sankey, T.T.; Li, J.; Ravi, S.; Wang, G.; Caster, J.; Kasprak, A. Quantifying plant-soil-nutrient dynamics in rangelands: Fusion of UAV hyperspectral-LiDAR, UAV multispectral-photogrammetry, and ground-based LiDAR-digital photography in a shrub-encroached desert grassland. Remote Sens. Environ. 2021, 253, 112223. [Google Scholar] [CrossRef]
- Hawley, C.M.; Loudermilk, E.L.; Rowell, E.M.; Pokswinski, S. A novel approach to fuel biomass sampling for 3D fuel characterization. MethodsX 2018, 5, 1597–1604. [Google Scholar] [CrossRef]
- Cooper, S.D.; Roy, D.P.; Schaaf, C.B.; Paynter, I. Examination of the potential of terrestrial laser scanning and structure-from-motion photogrammetry for rapid nondestructive field measurement of grass biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Olsoy, P.J.; Glenn, N.F.; Clark, P.E.; Derryberry, D.R. Aboveground total and green biomass of dryland shrub derived from terrestrial laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 88, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Rowell, E.; Loudermilk, E.L.; Hawley, C.; Pokswinski, S.; Seielstad, C.; Queen, L.; O’brien, J.J.; Hudak, A.T.; Goodrick, S.; Hiers, J.K. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. For. Ecol. Manag. 2020, 462, 117945. [Google Scholar] [CrossRef]
- Hudak, A.T.; Kato, A.; Bright, B.C.; Loudermilk, E.L.; Hawley, C.; Restaino, J.C.; Ottmar, R.D.; Prata, G.A.; Cabo, C.; Prichard, S.J. Towards spatially explicit quantification of pre-and postfire fuels and fuel consumption from traditional and point cloud measurements. For. Sci. 2020, 66, 428–442. [Google Scholar] [CrossRef]
- Donager, J.J.; Sánchez Meador, A.J.; Blackburn, R.C. Adjudicating Perspectives on Forest Structure: How Do Airborne, Terrestrial, and Mobile Lidar-Derived Estimates Compare? Remote Sens. 2021, 13, 2297. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Yu, X. The use of a mobile laser scanning system for mapping large forest plots. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1504–1508. [Google Scholar] [CrossRef]
- McDaniel, M.W.; Nishihata, T.; Brooks, C.A.; Salesses, P.; Iagnemma, K. Terrain classification and identification of tree stems using ground-based LiDAR. J. Field Robot. 2012, 29, 891–910. [Google Scholar] [CrossRef]
- Pierzchała, M.; Giguère, P.; Astrup, R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Comput. Electron. Agric. 2018, 145, 217–225. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Cui, J.; Lum, S.K.Y.; Chen, B.M. UAV LiDAR for below-canopy forest surveys. J. Unmanned Veh. Syst. 2013, 1, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Stovall, A.E.; Atkins, J.W. Assessing low-cost terrestrial laser scanners for deriving forest structure parameters. Preprints 2021, 2021070690. [Google Scholar] [CrossRef]
- Anderson, C.T.; Dietz, S.L.; Pokswinski, S.M.; Jenkins, A.M.; Kaeser, M.J.; Hiers, J.K.; Pelc, B.D. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests. For. Ecol. Manag. 2021, 491, 119118. [Google Scholar] [CrossRef]
- Wallace, L.; Hillman, S.; Hally, B.; Taneja, R.; White, A.; McGlade, J. Terrestrial laser scanning: An operational tool for fuel hazard mapping? Fire 2022, 5, 85. [Google Scholar] [CrossRef]
- Tatsumi, S.; Yamaguchi, K.; Furuya, N. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. 2022, 1–7. [Google Scholar] [CrossRef]
- Bauwens, S.; Bartholomeus, H.; Calders, K.; Lejeune, P. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 2016, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Pokswinski, S.; Gallagher, M.R.; Skowronski, N.S.; Loudermilk, E.L.; Hawley, C.; Wallace, D.; Everland, A.; Wallace, J.; Hiers, J.K. A simplified and affordable approach to forest monitoring using single terrestrial laser scans and transect sampling. MethodsX 2021, 8, 101484. [Google Scholar] [CrossRef]
- Goebel, P.C.; Palik, B.J.; Kirkman, L.K.; Drew, M.B.; West, L.; Pederson, D.C. Forest ecosystems of a Lower Gulf Coastal Plain landscape: Multifactor classification and analysis. J. Torrey Bot. Soc. 2001, 128, 47–75. [Google Scholar] [CrossRef]
- Collins, B.M.; Everett, R.G.; Stephens, S.L. Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere 2011, 2, 1–14. [Google Scholar] [CrossRef]
- Gallagher, M.R.; Maxwell, A.E.; Guillén, L.A.; Everland, A.; Loudermilk, E.L.; Skowronski, N.S. Estimation of Plot-Level Burn Severity Using Terrestrial Laser Scanning. Remote Sens. 2021, 13, 4168. [Google Scholar] [CrossRef]
- Batchelor, J.L.; Wilson, T.M.; Olsen, M.J.; Ripple, W.J. New Structural Complexity Metrics for Forests from Single Terrestrial Lidar Scans. Remote Sens. 2022, 15, 145. [Google Scholar] [CrossRef]
- Looper, E.E. Soil Survey of Liberty and Long Counties, Georgia; The Service: Washington, DC, USA, 1982. [Google Scholar]
- Frost, C. History and Future of the Longleaf Pine Ecosystem. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 9–42. [Google Scholar]
- Brudvig, L.A.; Orrock, J.L.; Damschen, E.I.; Collins, C.D.; Hahn, P.G.; Mattingly, W.B.; Veldman, J.W.; Walker, J.L. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities. PLoS ONE 2014, 9, e86604. [Google Scholar] [CrossRef]
- Hunter, E.A.; Rostal, D.C. Fire management effects on long-term gopher tortoise population dynamics. J. Wildl. Manag. 2021, 85, 654–664. [Google Scholar] [CrossRef]
- Rostal, D.C.; Jones, D.N. Population biology of the gopher tortoise (Gopherus polyphemus) in southeast Georgia. Chelonian Conserv. Biol. 2002, 4, 479–487. [Google Scholar]
- Odom, R.R.; Rappole, J.; Evans, J.; Charbonneau, D.; Palmer, D. Red-cockaded Woodpecker relocation experiment in coastal Georgia. Wildl. Soc. Bull. 1982, 10, 197–203. [Google Scholar]
- Soil Survey Staff. Web Soil Survey. Available online: https://websoilsurvey.nrcs.usda.gov/app/ (accessed on 7 January 2022).
- Reid, A.M.; Robertson, K.M.; Hmielowski, T.L. Predicting litter and live herb fuel consumption during prescribed fires in native and old-field upland pine communities of the southeastern United States. Can. J. For. Res. 2012, 42, 1611–1622. [Google Scholar] [CrossRef]
- Ottmar, R.D.; Hiers, J.K.; Butler, B.W.; Clements, C.B.; Dickinson, M.B.; Hudak, A.T.; O’Brien, J.J.; Potter, B.E.; Rowell, E.M.; Strand, T.M.; et al. Measurements, datasets and preliminary results from the RxCADRE project—2008, 2011 and 2012. Int. J. Wildland Fire 2016, 25, 1–9. [Google Scholar] [CrossRef]
- Hough, W. Estimating available fuel weight consumed by prescribed fires in the South [Prescribed burning, USA]. In USDA Forest Service Research Paper SE (USA). No. 187; US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1978. [Google Scholar]
- Wade, D.D.; Lunsford, J.D.; Dixon, M.J.; Mobley, H.E. A Guide for Prescribed Fire in Southern Forests; Southern Region Technical Publication TP-R8-11; USDA Forest Service: Atlanta, GA, USA, 1989; p. 56.
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- de Conto, T.; Olofsson, K.; Görgens, E.B.; Rodriguez, L.C.E.; Almeida, G. Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning. Comput. Electron. Agric. 2017, 143, 165–176. [Google Scholar] [CrossRef]
- Lumley, T. Leaps: Regression Subset Selection. R Package, 3.1. 2020. Available online: https://cran.r-project.org/web/packages/leaps/index.html (accessed on 7 January 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Furnival, G.M.; Wilson, R.W. Regressions by leaps and bounds. Technometrics 1974, 16, 499–511. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Mell, W.; Charney, J.; Jenkins, M.A.; Cheney, P.; Gould, J. Numerical simulations of grassland fire behavior from the LANL-FIRETEC and NIST-WFDS models. In Remote Sensing and Modeling Applications to Wildland Fires; Springer: Berlin/Heidelberg, Germany, 2013; pp. 209–225. [Google Scholar]
- Yedinak, K.M.; Strand, E.K.; Hiers, J.K.; Varner, J.M. Embracing complexity to advance the science of wildland fire behavior. Fire 2018, 1, 20. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hiers, J.; Varner, J.; Hoffman, C.; Dickinson, M.; Michaletz, S.; Loudermilk, E.; Butler, B. Advances in mechanistic approaches to quantifying biophysical fire effects. Curr. For. Rep. 2018, 4, 161–177. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M.; et al. Prescribed fire science: The case for a refined research agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.E.; Dickinson, L.J. The Photoload Sampling Technique: Estimating Surface Fuel Loadings from Downward-Looking Photographs of Synthetic Fuelbeds; RMRS-GTR-190; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007.
Vegetation and Fuel Mass Class (Linear Model) | Burn Status | R2 | RMSE | BIC | Model Selected Subset of Six TLS Metrics |
---|---|---|---|---|---|
Total | Pre | 0.72 | 228 | −24 | % PD2, Sk Prop Non-occluded2, Ku Prop Non-occluded2, % Space5, Mean Ht Voxels, Surface VD |
Total no FWD | Pre | 0.65 | 208 | −17 | PD2, % PD2, PD5, Ht 65th Q, Ku Prop Non-occluded1, % Space3 |
Total 0–30 cm | Pre | 0.74 | 196 | −29 | % PD2, Sk Prop Non-occluded2, Ku Prop Non-occluded2, % Space5, Mean Ht Voxels, Surface VD |
Total 0–30 cm no FWD | Pre | 0.69 | 168 | −24 | Ht 90th Q, % PD 30th Q, Ku Prop Non-occluded1, SD Prop Non-occluded2, SD Ht Voxels, Ku CWD 1000 |
FWD | Pre | 0.61 | 108 | −12 | SD Ht2, Sk Ht2, SD Ht5, 90th Q Ht, % Space5, Mean Ht Voxels |
Fine Fuels | Pre | 0.71 | 148 | −25 | PD2, % PD2, Ht 30th Q, Ht 65th Q, % PD 10th Q, % PD 60th Q |
Total 0–30 cm Post | Post | 0.67 | 136 | −20 | Ht 45th Q, % PD 80th Q, % PD 90th Q, Max Tree Ht, Surface Mean Ht, Surface Sk Ht |
Total 0–30 cm Pre and Post | Pre & Post | 0.69 | 236 | −65 | Median Ht1, Ht 15th Q, % Occluded5, Mean Prop Non-occluded5, Mean Ht Voxels, Surface TGI |
Portion of Scan | Metric Type | No. of Metrics | Selected Metrics in Linear Models | Short Description |
---|---|---|---|---|
By Stratum * | ||||
Height Statistic | ||||
1 | Median Ht1 (1) | Median height (Ht) in stratum 1 | ||
2 | SD Ht2 (1), SD Ht5 (1) | Standard deviation (SD) of heights in strata 2, 5 | ||
1 | Sk Ht2 (1) | Skewness (Sk) of heights in stratum 2 | ||
General | ||||
2 | PD2 (2), PD5 (1) | Point density (PD) in strata 2, 5 | ||
1 | % PD2 (4) | % of points in strata 4 | ||
Space & Occlusion | ||||
1 | % Occluded5 (1) | % of points occluded in stratum 5 | ||
2 | % Space3 (1), % Space5 (3) | % of unreturned non-ground points (true empty space) in strata 3, 5 | ||
1 | Mean Prop Non-occluded5 | Mean proportion (Prop) of occluded and no returns in stratum 5 | ||
1 | SD Prop Non-occluded2 (2) | SD of proportion of occluded and no returns in stratum 2 | ||
1 | Sk Prop Non-occluded2 (2) | Skewness of proportion of occluded and no returns in stratum 2 | ||
2 | Ku Prop Non-occluded1 (2), Ku Prop Non-occluded2 (2) | Kurtosis of proportion of occluded and no returns in strata 1, 2 | ||
0–3 m ** | ||||
Height Statistic | ||||
1 | Surface Mean Ht (1) | Standardized surface fuel mean height | ||
1 | Surface Sk Ht (1) | Standardized surface fuel skewness of height | ||
1 | Ku CWD 1000 (1) | Standardized surface fuel kurtosis of heights knn classified as 100–1000 h fuels | ||
General | ||||
1 | Surface VD (2) | Standardized surface fuel voxel density(VD) | ||
1 | Surface TGI (1) | Standardized surface fuel triangulated greenness index(TGI) | ||
Entire scan | ||||
Height Statistic ** | ||||
1 | Mean Ht Voxels (4) | Mean height of standardized point cloud | ||
1 | SD Ht Voxels (1) | Standard deviation of heights in standardized point cloud | ||
Quantiles * | ||||
5 | Ht 15th Q (1), Ht 30th Q (1), Ht 45th Q (1), Ht 65th Q (2), Ht 90th Q (1) | Max height at 5th to 95th quantiles(Q), in intervals of 5 | ||
5 | % PD 10th Q (1), % PD 30th Q (1), % PD 60th Q (1), % PD 80th Q (1), % PD 90th Q (1) | % of points below 10th to 90th quantile of maximum height, in intervals of 10 | ||
Trees ** | ||||
1 | Max Tree Ht (1) | Maximum tree height | ||
Total no. of metrics | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loudermilk, E.L.; Pokswinski, S.; Hawley, C.M.; Maxwell, A.; Gallagher, M.R.; Skowronski, N.S.; Hudak, A.T.; Hoffman, C.; Hiers, J.K. Terrestrial Laser Scan Metrics Predict Surface Vegetation Biomass and Consumption in a Frequently Burned Southeastern U.S. Ecosystem. Fire 2023, 6, 151. https://doi.org/10.3390/fire6040151
Loudermilk EL, Pokswinski S, Hawley CM, Maxwell A, Gallagher MR, Skowronski NS, Hudak AT, Hoffman C, Hiers JK. Terrestrial Laser Scan Metrics Predict Surface Vegetation Biomass and Consumption in a Frequently Burned Southeastern U.S. Ecosystem. Fire. 2023; 6(4):151. https://doi.org/10.3390/fire6040151
Chicago/Turabian StyleLoudermilk, Eva Louise, Scott Pokswinski, Christie M. Hawley, Aaron Maxwell, Michael R. Gallagher, Nicholas S. Skowronski, Andrew T. Hudak, Chad Hoffman, and John Kevin Hiers. 2023. "Terrestrial Laser Scan Metrics Predict Surface Vegetation Biomass and Consumption in a Frequently Burned Southeastern U.S. Ecosystem" Fire 6, no. 4: 151. https://doi.org/10.3390/fire6040151
APA StyleLoudermilk, E. L., Pokswinski, S., Hawley, C. M., Maxwell, A., Gallagher, M. R., Skowronski, N. S., Hudak, A. T., Hoffman, C., & Hiers, J. K. (2023). Terrestrial Laser Scan Metrics Predict Surface Vegetation Biomass and Consumption in a Frequently Burned Southeastern U.S. Ecosystem. Fire, 6(4), 151. https://doi.org/10.3390/fire6040151