Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System
Abstract
:1. Introduction
- A new model integrating groundwater level (GWL) into the existing Fire Weather Index (FWI) system is proposed; specifically, the Duff Moisture Code (DMC) can be calculated using GWL and humidity under low complexity.
- An Internet of Things (IoT) system is established to monitor and manage peatland data in Raja Musa Forest Reserve (RMFR), Selangor, Malaysia.
- The validity of IoT system data has been proven by the data comparison of the Malaysia Meteorological Department (METMalaysia) in the same period, which means that the feasibility of the IoT system has been affirmed.
2. Materials and Methods
2.1. IoT System for Peatland Forest Management
2.2. Fire Weather Index (FWI) System
- ➢
- Relevance to Peatland Ecosystem: Tropical peatland forests are characterized by a thick layer of organic material called peat. The groundwater level is a crucial factor affecting the moisture content of peat, as it influences the water table and the overall hydrological conditions [34]. Incorporating groundwater level into the DMC calculation can capture the specific moisture dynamics of peatland ecosystems.
- ➢
- Reflects Local Conditions: Groundwater level directly measures the water availability in the specific peatland area [35]. It considers the local hydrological characteristics, such as rainfall patterns, drainage, and evaporation rates [36]. Considering these factors, the DMC calculation becomes more representative of the moisture conditions in the tropical peatland forest.
- ➢
- Long-Term Moisture Dynamics: Groundwater level represents the long-term water availability in peatland ecosystems [37]. Unlike surface water or precipitation, groundwater is often more stable and persists longer [38]. Incorporating groundwater level into the DMC calculation allows us to assess the moisture conditions over a longer period, capturing seasonal variations and enabling better fire risk prediction in tropical peatland forests.
- ➢
- Improved Fire Risk Assessment: DMC estimates the fire danger rating and potential fire behavior. Considering groundwater level can enhance the accuracy of fire risk assessment in tropical peatland forests [39]. Peatlands are highly vulnerable to fires, and their management and conservation depend on accurate fire risk evaluations. Groundwater-informed DMC can contribute to more effective fire prevention and management strategies.
- ➢
- Informing Land Management Decisions: Groundwater-informed DMC can provide valuable information for land managers and decision-makers in tropical peatland forests [40]. Understanding the moisture conditions derived from groundwater level data enables them to make informed decisions regarding land use planning, fire risk mitigation, and sustainable resource management.
- ⟡
- Peatland Extent: Malaysia has a significant extent of peatland forests, particularly in the states of Sarawak and Sabah on the island of Borneo [41]. Thick layers of organic peat material and unique hydrological conditions characterize these peatlands [42]. Incorporating groundwater level data into the DMC calculation allows for a more accurate representation of the moisture dynamics specific to Malaysian peatland forests.
- ⟡
- High Fire Risk: Peatlands in Malaysia are highly susceptible to fires, especially during prolonged dry periods [43]. The peat soils can become highly flammable when dried out, and once ignited, these fires can be challenging to control and extinguish [44]. Incorporating groundwater level data into the DMC calculation helps better assess the moisture conditions and fire risk specific to Malaysian peatland forests. This information can assist in fire prevention and management strategies, helping to protect these valuable ecosystems.
- ⟡
- Hydrological Variability: Malaysia experiences precipitation patterns and climate variations across different regions and seasons [45]. Groundwater level data captures the local hydrological variability, considering the specific characteristics of Malaysian peatland ecosystems [46]. This information enhances the accuracy of the DMC calculation, enabling a more precise assessment of moisture conditions and fire risk in Malaysian peatland forests.
- ⟡
- Sustainable Resource Management: Malaysian peatland forests are valuable ecosystems that provide essential ecosystem services and support biodiversity. They contribute to local livelihoods through agriculture, timber extraction, and ecotourism [47]. Land managers and decision-makers can make more informed choices regarding sustainable resource management practices using groundwater-informed DMC [48]. This helps to balance economic development with the conservation and protection of Malaysian peatland forests.
- ⟡
- Climate Change Mitigation: Peatlands play a vital role in climate change mitigation by storing large amounts of carbon. However, when peatlands are degraded or subjected to fires, significant amounts of greenhouse gases are released into the atmosphere [49]. Accurate assessment of fire risk using groundwater-informed DMC can aid in preventing peatland fires [50], which helps to maintain the carbon sequestration capacity of Malaysian peatland forests and mitigate climate change impacts.
2.3. Algorithms for Evaporation Rate
Algorithm 1. DMC model of Canadian FWI system [52] |
Input: rainfall as R, temperature as T, humidity as H, DMC of the previous day as dmc0. |
Output: DMC |
if R > 1.5 Re = 0.92 ∗ R − 1.27 Mo = 20.0 + 280.0/exp(0.023 ∗ dmc0) if dmc0 <= 33.0 b = 100.0/(0.5 + 0.3 ∗ dmc0) elseif dmc0 > 33.0 & dmc0 <= 65.0 b = 14.0 − 1.3 ∗ log(dmc0) else b = 6.2 ∗ log(dmc0) − 17.2 end if Mr = Mo + (1000 ∗ Re)/(48.77 + b ∗ Re) Pr = 43.43 ∗ (5.6348 − log(Mr − 20.0)) K = 1.894 ∗ (T + 1.1) ∗ (100 − H) ∗ 12 ∗ 0.0001 DMC = Pr + 100 ∗ K else K = 1.894 ∗ (T + 1.1) ∗ (100 − H) ∗ 12 ∗ 0.0001 DMC = dmc0 + 100 ∗ K end if return DMC |
2.4. Linear_DMC Model
2.5. Linear_Mixed_DMC Model
3. Results and Discussion
3.1. Results of Data Validation
3.2. Results of The Proposed Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, A. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Atyi, R.E. State of the Congo Basin Forests in 2021: Overall conclusions. In The Forests of the Congo Basin: State of the Forests; CIFOR: Bogor, Indonesia, 2021; Volume 2022, p. 367. [Google Scholar] [CrossRef]
- Keddy, P.A.; Fraser, L.H.; Solomeshch, A.I.; Junk, W.J.; Campbell, D.R.; Arroyo, M.T.K.; Alho, C.J.R. Wet and Wonderful: The World’s Largest Wetlands Are Conservation Priorities. Bioscience 2009, 59, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Merchant, M.A.; Adams, J.R.; Berg, A.A.; Baltzer, J.L.; Quinton, W.L.; Chasmer, L.E. Contributions of C-Band SAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1467–1482. [Google Scholar] [CrossRef]
- Lees, K.J.; Artz, R.R.; Khomik, M.; Clark, J.M.; Ritson, J.; Hancock, M.H.; Cowie, N.R.; Quaife, T. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4547–4557. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, S.; Leuther, F.; Albrecht, L.; Hoeschen, C.; Kilian, R.; Surey, R.; Mikutta, R.; Kaiser, K.; Mueller, C.W.; Vogel, H.-J. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, D.S.; Striganova, B.R.; Bukvareva, E.N. An environment-oriented concept of nature use. Her. Russ. Acad. Sci. 2010, 80, 74–82. [Google Scholar] [CrossRef]
- Page, S.; Hoscilo, A.; Langner, A.; Tansey, K.; Siegert, F.; Limin, S.; Rieley, J. Tropical peatland fires in Southeast Asia. In Tropical Fire Ecology; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Stockwell, C.E.; Jayarathne, T.; Cochrane, M.A.; Ryan, K.C.; Putra, E.I.; Saharjo, B.H.; Nurhayati, A.D.; Albar, I.; Blake, D.R.; Simpson, I.J.; et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 2016, 16, 11711–11732. [Google Scholar] [CrossRef] [Green Version]
- Usup, A.; Hashimoto, Y.; Takahashi, H.; Hayasaka, H. Combustion and thermal characteristics of peat fire in tropical peatland in Central Kalimantan, Indonesia. Tropics 2004, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Adrianto, H.A.; Spracklen, D.V.; Arnold, S.R.; Sitanggang, I.S.; Syaufina, L. Forest and Land Fires Are Mainly Associated with Deforestation in Riau Province, Indonesia. Remote Sens. 2020, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.E.H.; Evers, S.; Yule, C.M.; Gan, J.Y. In situ tropical peatland fire emission factors and their variability, as determined by field measurements in Peninsula Malaysia. Glob. Biogeochem. Cycles 2018, 32, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, J.; Shi, C.; Liew, S.C. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires. Environ. Manag. 2017, 60, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Stefanidou, M.; Athanaselis, S.; Spiliopoulou, C. Health Impacts of Fire Smoke Inhalation. Inhal. Toxicol. 2008, 20, 761–766. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Jaafar, Z.; Tan, A.K.J.; Carrasco, L.R.; Ewing, J.J.; Bickford, D.P.; Webb, E.L.; Koh, L.P. Toward clearer skies: Challenges in regulating transboundary haze in Southeast Asia. Environ. Sci. Policy 2016, 55, 87–95. [Google Scholar] [CrossRef]
- Novita, A.A.; Awumbila, S.S.; binti Nazrey, S.N. Transboundary Smoke-Haze Disaster Mitigation Efforts. In 2nd Annual International Conference on Business and Public Administration (AICoBPA 2019); Atlantis Press: Dordrecht, The Netherlands, 2020; pp. 311–314. [Google Scholar] [CrossRef]
- Apichai, S. Transboundary Haze Pollution Problem in Southeast Asia: Reframing ASEAN’s Response. No. DP-2015-82. 2015. Available online: https://ideas.repec.org/p/era/wpaper/dp-2015-82.html (accessed on 5 January 2023).
- Cheong, K.H.; Ngiam, N.J.; Morgan, G.G.; Pek, P.P.; Tan, B.Y.-Q.; Lai, J.W.; Koh, J.M.; Ong, M.E.H.; Ho, A.F.W. Acute Health Impacts of the Southeast Asian Transboundary Haze Problem—A Review. Int. J. Environ. Res. Public Health 2019, 16, 3286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitanggang, I.S.; Syaufina, L.; Trisminingsih, R.; Ramdhany, D.; Nuradi, E.; Hidayat, M.F.A.; Rahmawan, H.; Wulandari; Ardiansyah, F.; Albar, I.; et al. Indonesian Forest and Land Fire Prevention Patrol System. Fire 2022, 5, 136. [Google Scholar] [CrossRef]
- Hikouei, I.S.; Eshleman, K.N.; Saharjo, B.H.; Graham, L.L.; Applegate, G.; Cochrane, M.A. Using machine learning algorithms to predict groundwater levels in Indonesian tropical peatlands. Sci. Total Environ. 2023, 857, 159701. [Google Scholar] [CrossRef] [PubMed]
- Widodo, J.; Izumi, Y.; Takahashi, A.; Kausarian, H.; Perissin, D.; Sri Sumantyo, J.T. Detection of Peat Fire Risk Area Based on Impedance Model and DInSAR Approaches Using ALOS-2 PALSAR-2 Data. IEEE Access 2019, 7, 22395–22407. [Google Scholar] [CrossRef]
- Davies, G.M.; Gray, A.; Power, S.C.; Domènech, R. Resilience of temperate peatland vegetation communities to wildfire depends upon burn severity and pre-fire species composition. Ecol. Evol. 2023, 13, e9912. [Google Scholar] [CrossRef]
- Kirkland, M.; Atkinson, P.W.; Pearce-Higgins, J.W.; De Jong, M.; Dowling, T.P.; Grummo, D.; Critchley, M.; Ashton-Butt, A. Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions. Sci. Total Environ. 2023, 884, 163849. [Google Scholar] [CrossRef]
- Lupascu, M.; Wijedasa, L.S. Paludiculture as a sustainable land use alternative for tropical peatlands: A review. Sci. Total Environ. 2020, 753, 142111. [Google Scholar] [CrossRef]
- Rawluk, A.; Sanders, A.; Yuwati, T.W.; Rachmanadi, D.; Izazaya, N.; Yulianti, N.; Sakuntaladewi, N.; Dyson, A.; Graham, L.; Kunarso, A.; et al. Finding common ground: Developing a shared understanding of tropical peatswamp forest restoration and fires across culture, language, and discipline. Int. For. Rev. 2022, 24, 426–440. [Google Scholar] [CrossRef]
- Hiller, B.; Fisher, J. A Multifunctional. Scape Approach for Sustainable Management of Intact Ecosystems—A Review of Tropical Peatlands. Sustainability 2023, 15, 2484. [Google Scholar] [CrossRef]
- Sali, A.; Mohd Ali, A.; Ali, B.M.; Syed Ahmad Abdul Rahman, S.M.; Liew, J.T.; Saleh, N.L.; Nuruddin, A.A.; Razali, S.M.; Nsaif, I.G.; Ramli, N.; et al. Peatlands monitoring in Malaysia with IoT Systems: Preliminary experimental results. In Computational Intelligence in Information Systems: Proceedings of the Computational Intelligence in Information Systems Conference (CIIS 2020); Springer International Publishing: Cham, Switzerland, 2021; pp. 233–242. [Google Scholar] [CrossRef]
- Liew, J.T.; Sali, A.; Noordin, N.K.; Ali, B.M.; Hashim, F.; Mashohor, S.; Saleh, N.L.; Ouzrout, Y.; Sekhari, A. Sustainable peatland management with IoT and data analytics. In Smart and Sustainable Collaborative Networks 4.0, Proceedings of the 22nd IFIP WG 5.5 Working Conference on Virtual Enterprises, Saint-Étienne, France, 22–24 November 2021; PRO-VE 2021, Proceedings 22; Springer International Publishing: Cham, Switzerland, 2021; pp. 549–557. [Google Scholar] [CrossRef]
- Li, L.; Sali, A.; Liew, J.T.; Saleh, N.L.; Ahmad, S.M.S.; Ali, A.M.; Nuruddin, A.A.; Aziz, N.A.; Sitanggang, I.S.; Syaufina, L.; et al. Estimation of Ground Water Level (GWL) for Tropical Peatland Forest Using Machine Learning. IEEE Access 2022, 10, 126180–126187. [Google Scholar] [CrossRef]
- Laman Web Rasmi Jabatan Meteorologi Malaysia. Available online: https://www.met.gov.my/en/pendidikan/peralatan-meteorologi/#Automatic%20Weather%20System%20%20(AWS) (accessed on 14 June 2023).
- Zhao, L.; Wu, W.; Li, S. Design and Implementation of an IoT-Based Indoor Air Quality Detector With Multiple Communication Interfaces. IEEE Internet Things J. 2019, 6, 9621–9632. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.V.; McAlpine, R.S.; Lynham, T.J.; Dube, D.E. The Canadian forest fire danger rating system: An overview. For. Chron. 1989, 65, 450–457. [Google Scholar] [CrossRef]
- Van Wagner, C.E.; Petawawa, F. Development and Structure of the Canadian Forest Fireweather Index System; Forestry Technical Report; Canadian Forestry Service: Ottawa, ON, Canada, 1987; Volume 35, p. 19927. Available online: https://cfs.nrcan.gc.ca/publications?id=19927 (accessed on 5 February 2023).
- Taufik, M.; Widyastuti, M.T.; Sulaiman, A.; Murdiyarso, D.; Santikayasa, I.P.; Minasny, B. An improved drought-fire assessment for managing fire risks in tropical peatlands. Agric. For. Meteorol. 2022, 312, 108738. [Google Scholar] [CrossRef]
- Wu, S.; Tetzlaff, D.; Yang, X.; Soulsby, C. Disentangling the influence of landscape characteristics, hydroclimatic variability and land management on surface water NO3-N dynamics: Spatially distributed modeling over 30 yr in a lowland mixed land use catchment. Water Resour. Res. 2022, 58, e2021WR030566. [Google Scholar] [CrossRef]
- Taufik, M.; Veldhuizen, A.A.; Wösten, J.H.M.; Van Lanen, H.A.J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 2019, 347, 160–169. [Google Scholar] [CrossRef]
- Taufik, M.; Minasny, B.; McBratney, A.B.; Van Dam, J.C.; Jones, P.D.; Van Lanen, H.A.J. Human-induced changes in Indonesian peatlands increase drought severity. Environ. Res. Lett. 2020, 15, 084013. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, H.; Günther, A.; Couwenberg, J.; Lennartz, B. Long-term rewetting of degraded peatlands restores hydrological buffer function. Sci. Total Environ. 2020, 749, 141571. [Google Scholar] [CrossRef]
- King, R.; Richardson, S.; Walters, A.; Boesch, L.; Thomson, W.; Irons, J. Preliminary Evaluation of Environmental Issues on the Use of Peat as an Energy Source; (No. DOE/ET/10159-T21; TR-80/025-001); UOP/SDC, Joint Venture: McLean, VA, USA, 1980. [Google Scholar] [CrossRef] [Green Version]
- Kleine, L.; Tetzlaff, D.; Smith, A.; Goldhammer, T.; Soulsby, C. Using isotopes to understand landscape-scale connectivity in a groundwater-dominated, lowland catchment under drought conditions. Hydrol. Process. 2021, 35, e14197. [Google Scholar] [CrossRef]
- Wan Mohd Jaafar, W.S.; Said, N.F.S.; Abdul Maulud, K.N.; Uning, R.; Latif, M.T.; Muhmad Kamarulzaman, A.M.; Mohan, M.; Pradhan, B.; Saad, S.N.M.; Broadbent, E.N.; et al. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests 2020, 11, 1285. [Google Scholar] [CrossRef]
- Melling, L. Peatland in Malaysia. In Tropical Peatland Ecosystems; Springer: Tokyo, Japan, 2016; pp. 59–73. [Google Scholar] [CrossRef]
- Musri, I.; Ainuddin, A.N.; Hyrul, M.H.I.; Hazandy, A.H.; Azani, A.M.; Mitra, U. Post forest fire management at tropical peat swamp forest: A review of Malaysian experience on rehabilitation and risk mitigation. IOP Conf. Ser. Earth Environ. Sci. 2020, 504, 012017. [Google Scholar] [CrossRef]
- Page, S.E.; Hooijer, A. In the line of fire: The peatlands of Southeast Asia. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.T.; Fam, P.S.; Firdaus, R.B.R.; Tan, M.L.; Gunaratne, M.S. Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis. Agriculture 2021, 11, 569. [Google Scholar] [CrossRef]
- Park, H.; Takeuchi, W.; Ichii, K. Satellite-Based Estimation of Carbon Dioxide Budget in Tropical Peatland Ecosystems. Remote Sens. 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Nath, T.K.; Dahalan, M.P.B.; Parish, F.; Rengasamy, N. Local peoples’ appreciation on and contribution to conservation of peatland swamp forests: Experience from Peninsular Malaysia. Wetlands 2017, 37, 1067–1077. [Google Scholar] [CrossRef]
- Cochard, R. Scaling the costs of natural ecosystem degradation and biodiversity losses in Aceh Province, Sumatra. In Redefining Diversity & Dynamics of Natural Resources Management in Asia; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 231–271. [Google Scholar] [CrossRef]
- Murdiyarso, D.; Lilleskov, E.; Kolka, R. Tropical peatlands under siege: The need for evidence-based policies and strategies. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Parish, F.; Lew, S.Y.; Mohd Hassan, A.H. National strategies on responsible management of tropical peatland in Malaysia. In Tropical Peatland Eco-Management; Springer: Singapore, 2021; pp. 677–723. [Google Scholar] [CrossRef]
- Groot, W.J.D.; Field, R.D.; Brady, M.A.; Roswintiarti, O.; Mohamad, M. Development of the Indonesian and Malaysian Fire Danger Rating systems. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Van Wagner, C.E.; Pickett, T.L. Equations and Fortran Program for the Canadian Forest Fire Weather Index System; Forestry Technical Report 33; Canadian Forestry Service, Petawawa National Forestry Institute: Chalk River, ON, Canada, 1985; 18p, Available online: https://d1ied5g1xfgpx8.cloudfront.net/pdfs/19973.pdf (accessed on 5 February 2023).
- Hashim, J.H.; Adman, M.A.; Hashim, Z.; Mohd Radi, M.F.; Kwan, S.C. COVID-19 epidemic in Malaysia: Epidemic progression, challenges, and response. Front. Public Health 2021, 9, 560592. [Google Scholar] [CrossRef]
GWL | Humidity | Rainfall | Temperature | |
---|---|---|---|---|
count | 47,306.00 | 47,306.00 | 47,306.00 | 47,306.00 |
mean | −92.60 | 81.42 | 0.39 | 27.69 |
std | 63.64 | 14.65 | 4.71 | 3.59 |
min | −254.17 | 39.53 | 0.00 | 21.81 |
25% | −134.91 | 68.97 | 0.00 | 24.65 |
50% | −90.55 | 87.41 | 0.00 | 26.38 |
75% | −42.01 | 94.35 | 0.01 | 31.13 |
max | 55.91 | 98.41 | 157.00 | 36.05 |
Data Source | Data Type | Model | Correlation (R2) | MSE |
---|---|---|---|---|
METMalaysia | Rainfall, Temperature, Humidity, Previous DMC | Algorithm 1 [52] | 0.85 | 5.06 |
IoT system | Rainfall, Temperature, Humidity, Previous DMC | Algorithm 1 [52] | 0.78 | 7.20 |
IoT system | Groundwater Level, Humidity | Linear_DMC Model | 0.68 | 4.58 |
IoT system | Groundwater Level, Humidity | Linear_Mixed_DMC Model | 0.91 | 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Sali, A.; Noordin, N.K.; Ismail, A.; Hashim, F.; Rasid, M.F.A.; Hanafi, M.; Razali, S.M.; Aziz, N.A.; Sukaesih Sitanggang, I.; et al. Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System. Fire 2023, 6, 272. https://doi.org/10.3390/fire6070272
Li L, Sali A, Noordin NK, Ismail A, Hashim F, Rasid MFA, Hanafi M, Razali SM, Aziz NA, Sukaesih Sitanggang I, et al. Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System. Fire. 2023; 6(7):272. https://doi.org/10.3390/fire6070272
Chicago/Turabian StyleLi, Lu, Aduwati Sali, Nor Kamariah Noordin, Alyani Ismail, Fazirulhisyam Hashim, Mohd Fadlee A. Rasid, Marsyita Hanafi, Sheriza Mohd Razali, Nurizana Amir Aziz, Imas Sukaesih Sitanggang, and et al. 2023. "Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System" Fire 6, no. 7: 272. https://doi.org/10.3390/fire6070272
APA StyleLi, L., Sali, A., Noordin, N. K., Ismail, A., Hashim, F., Rasid, M. F. A., Hanafi, M., Razali, S. M., Aziz, N. A., Sukaesih Sitanggang, I., Syaufina, L., & Nurhayati, A. D. (2023). Modeling of Evaporation Rate for Peatland Fire Prevention Using Internet of Things (IoT) System. Fire, 6(7), 272. https://doi.org/10.3390/fire6070272