Examining the Effectiveness of Aerial Firefighting with the Components of Firebreak Requirements and Footprint Geometry—Critics of the Present Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Footprint Characteristics and Protection against Burn Through
2.2. Simplifying the Footprint Geometry to an Ellipse Form
2.3. Footprint Loss and Theoretical Compensation along the Transverse Axis
2.4. Interpreting the Effective Part in the Ellipse Model
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, G.; Leone, V.; Delogu, G.M. The Suppression Model Fragilities: The “Firefighting Trap”, Extreme Wildfire Events and Disasters, Root Causes and New Management Strategies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 135–153. [Google Scholar] [CrossRef]
- Pyne, S.J. Introduction to Wildland Fire: Fire Management in the United States, 2nd ed.; John Wiley and Sons Ltd.: New York, NY, USA, 1996; ISBN 9780471549130. [Google Scholar]
- Castro Rego, F.M.C.; Moreno Rodriguez, J.M.; Vallejo Calzada, V.R.; Xanthopoulos, G. Forest Fires—Sparking Firesmart Policies in the EU; Faivre, N., Ed.; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Ingalsbee, T.; Raja, U. The Rising Costs of Wildfire Suppression and the Case for Ecological Fire Use. In The Ecological Importance of Mixed-Severity Fires; Elsevier: Amsterdam, The Netherlands, 2015; pp. 348–371. [Google Scholar] [CrossRef]
- Halasz, A.; Bajnok, M.; Suli, A.; Miko, E.J.; Schieszl, T. Importance of Black locust foliage in the extension of grazing season and in the reduction of damages caused by climate change (a review). J. Rangel. Sci. 2021, 11, 119–124. [Google Scholar]
- Nagy, A.; Kiss, T.; Saláta, D.; Süli, Á.; Szalkay, C.; Falusi, E.; Penksza, K.; Pápay, G. Habitat mapping and possibilities for evaluation on environmental management of Vésztő-Mágor Nature Reserve. Columella—J. Agric. Environ. Sci. 2019, 6, 5–10. [Google Scholar] [CrossRef]
- Padanyi, J.; Foldi, L. Security Research in the Field of Climate Change. In Critical Infrastructure Protection Research; Nadai, L., Ed.; Springer: Zürich, Switzerland, 2016; pp. 79–90. [Google Scholar] [CrossRef]
- Thompson, M.P.; Calkin, D.E.; Herynk, J.; McHugh, C.W.; Short, K.C. Airtankers and wildfire management in the US Forest Service: Examining data availability and exploring usage and cost trends. Int. J. Wildland Fire 2013, 22, 223–233. [Google Scholar] [CrossRef]
- Gabbert, B. A 9-Year USFS Aerial Firefighting Study Left Many Questions Unanswered. Wildfire Today, 16 April 2021. Available online: https://wildfiretoday.com/2021/04/16/a-9-year-usfs-aerial-firefighting-study-left-many-questions-unanswered/ (accessed on 12 June 2023).
- Gabbert, B. How much does it cost to drop retardant on a fire? Wildfire Today, 13 February 2020. Available online: https://fireaviation.com/2020/02/13/how-much-does-it-cost-to-drop-retardant-on-a-fire/ (accessed on 12 June 2023).
- Stechishen, E. Measurement of the Effectiveness of Water as a Fire Suppressant; Canadian Forestry Service No. FF-X-23; Forest Research Institute: Ottawa, ON, Canada, 1970. [Google Scholar]
- Stechishen, E.; Little, E.C. Water Application Depths Required for Extinguishment of Low Intensity Fire in Forest Fuels; Canadian Forestry Service No. FF-X-29; Forest Fire Research Institute: Ottawa, ON, Canada, 1971. [Google Scholar]
- Loane, I.T.; Gould, J.S. Aerial Suppression of Bushfires: Cost-Benefit Study for Victoria; CSIRO Division of Forest Research: Canberra, Australia, 1986. [Google Scholar]
- Gould, J.S.; Khanna, P.K.; Hutchings, P.T.; Cheney, N.P.; Raison, R.J. Assessment of the Effectiveness and Environmental Risk of the Use of Retardants to Assist in Wildfire Control in Victoria; No. 50; Department of Natural Resources and Environment: Melbourne, Australia, 2000. [Google Scholar]
- Aerial Firefighting Use and Effectiveness (AFUE) Report, USDA, United States, 2020. Available online: https://www.fs.usda.gov/sites/default/files/2020-08/08242020_afue_final_report.pdf (accessed on 2 January 2023).
- George, C.W.; Blakely, A.D. An Evaluation of the Drop Characteristics and Ground Distribution Patterns of Forest Fire Retardants; Research Paper INT-134; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1973. [Google Scholar]
- Hardy, C. Chemicals for Forest Fire Fighting; Study; NFPA, National Fire Protection Association: Boston, MA, USA, 1985. [Google Scholar]
- Plucinski, M.P.; Pastor, E. Criteria and methodology for evaluating aerial wildfire suppression. Int. J. Wildland Fire 2013, 22, 1144–1154. [Google Scholar] [CrossRef]
- US Forest Service. Report, DC-10 Airtanker Drop Test, 10 Tanker Air Carrier, Tanker 910; US Forest Service, San Dimas Technology Development Center: Arcadia, CA, USA, 2006. [Google Scholar]
- Qureshi, S.; Altman, A. Studying Fluid Breakup and Dispersion to Predict Aerial Firefighting Ground Drop Patterns; AIAA Aerospace Sciences Meeting: Kissimmee, FL, USA, 2018. [Google Scholar]
- Ray, K. Is Aerial Firefighting Worth It? Aerial Firefighting Is Dangerous, Expensive and Environmentally Damaging. So Why Do We Do It? High Country News, 3 August 2015. Available online: https://www.hcn.org/issues/47.13/after-a-record-setting-wildfire-a-washington-county-prepares-for-the-next-one/the-cost-benefit-analysis-of-aerial-firefighting (accessed on 12 September 2022).
- Michelson, M. Can This $10 Million Firefighting Machine Actually Stop Fires? Outside Magazine, 11 May 2016. Available online: https://www.outsideonline.com/outdoor-adventure/environment/can-10-million-firefighting-machine-actually-stop-fires/ (accessed on 15 September 2022).
- Christopher, B. Does Using Airplanes to Put out Forest Fires Actually Work? Priceonomics, 11 July 2016.
- Gabbert, B. Organization Calls aerial Firefighting “Immoral”. Wildfire Today, 8 June 2012. Available online: https://wildfiretoday.com/2012/06/08/organization-calls-aerial-firefighting-immoral/ (accessed on 15 August 2022).
- Technical Report, Bombardier Canadair 415 Superscooper, Aerospace Technology, 2023. Available online: https://www.aerospace-technology.com/projects/bombardier_415/ (accessed on 10 June 2023).
- Technical Report, Beriev Be-200, Aerospace Technology, 2023. Available online: https://www.aerospace-technology.com/projects/beriev_be-200/ (accessed on 10 June 2023).
- Technical Report, MAFFS—Modular Aerial Firefighting Systems, 2023. Available online: https://www.maffs.com/ (accessed on 10 June 2023).
- Technical Report, B-747 Global Supertanker, 2023. Available online: https://globalsupertanker.biz/ (accessed on 10 June 2023).
- Moody, B. The VLAT—Just Another Tool. Aerial Firefighting Conference; Tangentlink Ltd.: Nimes, France, 2019. [Google Scholar]
- Project Report, An Innovative Release System for Air Tanker with Large and Very Large Capacity, Kepplair Evolution, 2021. Available online: https://kepplair-evolution.com/?page_id=1129&lang=en (accessed on 26 June 2023).
- Amorim, J.H. Numerical modelling of the aerial drop of firefighting agents by fixed wing aircraft. Part I: Model development. Int. J. Wildland Fire 2011, 20, 384–393. [Google Scholar] [CrossRef]
- Amorim, J.H. Numerical modelling of the aerial drop of firefighting agents by fixed-wing aircraft. Part II: Model validation. Int. J. Wildland Fire 2011, 20, 394–406. [Google Scholar] [CrossRef]
- Satoh, K.; Maeda, I.; Kuwahara, K.; Yang, K.T. A Numerical Study of Water Dump in Aerial Fire Fighting. Fire Saf. Sci. 2005, 8, 777–787. [Google Scholar] [CrossRef]
- Calbrix, C.; Stoukov, A.; Cadière, A.; Roig, B.; Legendre, D. Numerical simulation of the aerial drops of the Canadair CL-415 and the Dash-8 airtankers. In Advances in Forest Fire Research; Universidade de Coimbra: Coimbra, Portugal, 2022; pp. 1719–1923. [Google Scholar] [CrossRef]
- Ito, T.; Kato, H.; Goda, Y.; Tagawa, S.; Negishi, E. Water-dropping aerodinamics for firefighting amphibian. In Proceedings of the 27th International Congress of the Aeronautical Sciences, Nice, France, 19–24 September 2010; Available online: https://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/333.PDF (accessed on 6 October 2022).
- Suter, A. Drop Testing Airtankers, A Discussion of the Cup-and-Grid Method; Report; USDA Forest Service, Technological and Development Program: Missoula, MT, USA, 2000; Available online: https://studylib.net/doc/11395213/drop-testing-airtankers-a-discussion-of-the-cup-and-grid-... (accessed on 12 March 2022).
- Plucinski, M.P.; Cruz, M.G.; Gould, J.S.; Pastor, E.; Planas, E.; Perez, Y.; McCarthy, G. Project Fuse Aerial Suppression Experiments; Report; Bushfire Cooperative Research Centre: East Melbourne, Australia, 2008; Available online: https://www.bushfirecrc.com/sites/default/files/managed/resource/project_fuse_aerial_suppression_final_report.pdf (accessed on 10 October 2022).
- Legendre, D.; Becker, R.; Almeras, E.; Chassagne, A. Air tanker drop patterns. Int. J. Wildland Fire 2014, 23, 272–280. [Google Scholar] [CrossRef]
- Bell, A. Water Bombing of Fires: No Magic Solution. Ecos 50 Summer 1986/87, 18-22. Available online: http://www.ecosmagazine.com/?act=view_file&file_id=EC50p18.pdf (accessed on 15 March 2022).
- Plucinski, M.P. Evaluation of the Effectiveness of the 10 Tanker Air Carrier DC-10 Air Tanker, Victoria 2010; Report; CSIRO Publishing: Melbourne, Australia, 2010; Available online: https://www.bushfirecrc.com/sites/default/files/managed/resource/dc-10_evaluation_final_report.pdf (accessed on 10 October 2022).
- Penney, G.; Habibi, D.; Cattani, M.; Carter, M. Calculation of Critical Water Flow Rates for Wildfire Suppression. Fire 2019, 2, 3. [Google Scholar] [CrossRef]
- Escrig, A.; Liz, J.L.; Català, J. Innovative tools to create active and passive protection layers against forest fires. In Proceedings of the XIV World Forestry Congress, Durban, South Africa, 7–11 September 2015; Available online: https://www.researchgate.net/publication/282572765_Innovative_tools_to_create_active_and_passive_protection_layers_against_forest_fires (accessed on 18 December 2022).
- Simon, B.; Crowley, C.; Franco, F. The Costs and Costs Avoided from Wildfire Fire Management—A Conceptual Framework for a Value of Information Analysis. Front. Environ. Sci. 2022, 10, 804958. [Google Scholar] [CrossRef]
- Brou, A.D.V. Numerical Study of the Effectiveness of a Firebreak in a Savanna Area and the Sizing Rules by an Optimised Fire Propagation Model. Fire 2022, 5, 156. [Google Scholar] [CrossRef]
- Murgatroyd, I.R. Forest and Moorland Fire Suppression; Technical Note; Forestry Commission: Edinburgh, UK, 2002. Available online: https://cdn.forestresearch.gov.uk/2002/01/fctn3.pdf (accessed on 8 October 2022).
- Alexander, M.E.; Cruz, M. Fireline Intensity, Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of Forest Fuels. In Forest Fire: Control and Use; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Alexander, M.E. Calculating and interpreting forest fire intensities. Can. J. Bot. 1982, 60, 349–357. [Google Scholar] [CrossRef]
- Van Wilgen, B.W. A simple relationship for estimating the intensity of fires in natural vegetation. S. Afr. J. Bot. 1986, 52, 384–385. [Google Scholar] [CrossRef]
- Morvan, D.; Tauleigne, V.; Dupuy, J.L. Flame geometry and surface to crown fire transition during the propagation of a line fire through a Mediterranean shrub. In Forest Fire Research & Wildland Fire Safety; Viegas, D.X., Ed.; Millpress: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Alexander, M.E.; Cruz, M.G. Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. Int. J. Wildland Fire 2012, 21, 95–113. [Google Scholar] [CrossRef]
- Andrews, P.L.; Heinsch, F.A.; Schelvan, L. How to Generate and Interpret Fire Characteristics Charts for Surface and Crown Fire Behavior; General Technical Report, RMRS-GTR-253; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Graphical aids for visualizing Byram’s fireline intensity in relation to flame length and crown scorch height. For. Chron. 2012, 88, 185–190. [Google Scholar] [CrossRef]
- Finney, M.A.; Cohena, J.D.; Forthofera, J.M.; McAllistera, S.S.; Gollnerb, M.J.; Gorhamb, D.J.; Saitoc, K.; Akafuahc, N.K.; Adamc, B.A.; English, J.D. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef]
- Silva, F.R. Investigación y Capitalización de la Experiencia en el Empleo de Medios Aéros en la Defensa Contra los Incendios Forestales, La gestión de los Medios Aéros en la defensa conzta los incendios forestales, I. In Proceedings of the Simposium Internacional, Córdoba, Spain, 28–30 October 2002. [Google Scholar]
- Hansen, R. Estimating the amount of water required to extinguish wildfires under different conditions and in various fuel types. Int. J. Wildland Fire 2012, 21, 525–536. [Google Scholar] [CrossRef]
- Nayuki, K.; Kasahara, N. Report of Aerial Fire Fighting Using Remodeled Flying Boat PS-1; Report; National Research Institute of Fire and Disaster: Tokyo, Japan, 1976. [Google Scholar]
- Tomé, M.; Borrego, C. Fighting wildfires with retardants applied with airplanes. In Forest Fire Research & Wildland Fire Safety; Viegas, D.X., Ed.; Millpress: Rotterdam, The Netherlands, 2002; p. 133. ISBN 90-770117-72-0. [Google Scholar]
- Restas, A. Research and Development of Aerial Fire Detection and Extinguishing of Forest Fires. Ph.D. Thesis, Miklos Zrinyi National Defence University, Budapest, Hungary, 2008. [Google Scholar]
- Restas, A.; Szalkai, I.; Ovari, G. Drone Application for Spraying Disinfection Liquid Fighting against the COVID-19 Pandemic—Examining Drone-Related Parameters Influencing Effectiveness. Drones 2021, 6, 15. [Google Scholar] [CrossRef]
- Delforge, P. Guide d’emploi des moyens aeriens en feux de forets. In Aerial Firefighting Handbook; Minister de L’Interieur: Paris, France, 2001. [Google Scholar]
- Bortkiewicz, L. Das Gesetz der Kleinen Zahlen [The Law of Small Numbers]; Open Library OL7137710M; B.G. Teubner: Leipzig, Germany, 1898. [Google Scholar]
- Dekking, M. A Modern Introduction to Probability and Statistics; Springer: London, UK, 2005; pp. 181–190. ISBN 9781852338961. [Google Scholar]
- Durrett, R. Probability: Theory and Examples, 3rd ed.; Duxbury Press: London, UK, 2004; p. 512. ISBN 0534424414. [Google Scholar]
- Plucinski, M.P.; McCarthy, G.; Gould, J. Aerial Suppression Experiment; Ensis Technical Report No: 153, Ensis; Bushfire Research CSIRO: Cambridge, Australia, 2005. [Google Scholar]
- Cruz, M.G.; Matthews, S.; Gould, J.; Ellis, P.; Henderson, M.; Knight, I.; Watters, J. Fire Dynamics in Malleeheath; Fuel Weather and Fire Behaviour Prediction in South Australian Semi-Arid Shrublands; Technical Report A.10.01; Bushfire Cooperative Research Centre: East Melbourne, Australia, 2010; p. 134. [Google Scholar]
- Cruz, M.G.; Gould, J.S.; Hollis, J.J.; McCaw, W.L. A Hierarchical Classification of Wildland Fire Fuels for Australian Vegetation Types. Fire 2018, 1, 13. [Google Scholar] [CrossRef]
- Solarz, P.; Jordan, C. Airtanker Drop Guides; 0057-2848-MTDC, 5100/5700; USDA Forest Service, Technology and Development Program: Missoula, MT, USA, 2000. [Google Scholar]
- Wilson, A.A.G. Width of firebreak that is necessary to stop grass fires—Some field experiments. Can. J. For. Res. 1988, 18, 682–687. [Google Scholar] [CrossRef]
- Restas, A.; Almeida, M.; Lotfi, S.; Bodnar, L.; Viegas, D.X. Basic rules for developing fire sprinkler system in the forest. In Advances in Forest Fire Research; Universidade de Coimbra: Coimbra, Portugal, 2022. [Google Scholar] [CrossRef]
- Millington, J.D.A.; Wainwright, J.; Perry, G.L.W.; Romero-Calcerrada, R.; Malamud, B.D. Modelling Mediterranean landscape succession-disturbance dynamics: A landscape fire-succession model. Environ. Model. Softw. 2009, 24, 1196–1208. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cole, F.V. Predicting and interpreting fire intensities in Alaskan black spruce forests using the Canadian system of fire danger rating. In Managing Forests to Meet People’s Needs, Proceedings of the 1994 Society of American Foresters/Canadian Institute of Forestry Convention, Anchorage, AK, USA, 18–22 September 1994; Society of American Foresters: Bethesda, MD, USA, 1995; pp. 185–192. Available online: https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/18475.pdf (accessed on 11 July 2023).
- Hirsch, K.; Martell, D. A Review of Initial Attack Fire Crew Productivity and Effectiveness. Int. J. Wildland Fire 1996, 6, 199–215. [Google Scholar] [CrossRef]
- Fayad, J.; Morandini, F.; Accary, G.; Chatelon, F.; Wandon, C.; Burglin, A.; Rossi, L.; Marcelli, T.; Cancellieri, D.; Cancellieri, V.; et al. A Study of Two High Intensity Fires across Corsican Shrubland. Atmosphere 2023, 14, 473. [Google Scholar] [CrossRef]
- Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; Paper SE-38; USDA Forest Service Research, South-Eastern Forest Experiment Station: Asheville, NC, USA, 1968. [Google Scholar]
- Klein, G.A. Sources of Power: How People Make Decisions; MIT Press: Cambridge, MA, USA, 1999; ISBN 0262611465. [Google Scholar]
- Klein, G.A. The Power of Intuition: How to Use Your Gut Feelings to Make Better Decisions at Work; Currency: Melbourne, Australia, 2004; ISBN 0385502893. [Google Scholar]
- Restás, Á. Decision-Making of Firefighting Managers in Emergencies. Ph.D. Thesis, Budapest Corvinus University, Budapest, Hungary, 2013; p. 157. [Google Scholar]
- Pekić, Z. High rate spray technique—A new way for effective aerial wildfire suppression. In Proceedings of the Wildfire 2007 Conference, Seville, Spain, 14–17 May 2007. [Google Scholar]
- Geissinger, S.; Geissinger, M. Firefighters Mark Decades of Aerial Work. MediaNews, 12 August 2005. Available online: https://www.eastbaytimes.com/2005/08/12/firefighters-mark-decades-of-aerial-work/ (accessed on 12 October 2022).
Characteristics of A 550 m2 Ellipse (a = 25 m; b = 7 m) | B1 | B2 | B3 | B4 |
---|---|---|---|---|
Required width of the fire brake (2b) [m] | 10 | 9 | 8.75 | 7 |
Length of the effective part of the ellipse (2a′) [m] | 35.0 | 38.5 | 39.0 | 43.5 |
Length of the converted strip ˙(2a′ + 2x′) [m] | 55.0 | 61.1 | 62.9 | 78.6 |
Difference in the length effectiveness (x′) [m] | 20.0 | 22.6 | 23.9 | 35.1 |
Difference in the length effectiveness in percentage (x′) [%] | 57.1 | 58.7 | 61.3 | 80.7 |
Effective area size of the ellipse (4a′b′) [m2] | 350.0 | 346.5 | 341.3 | 304.5 |
Ineffective area size of the ellipse (πab-4a′b′) [m2] | 200.0 | 203.5 | 208.7 | 245.5 |
Ineffective part of the ellipse [%] | 36.4 | 37.0 | 37.9 | 44.6 |
Characteristics of the 550 m2 Ellipse | B1 | B2 | B3 | B4 |
---|---|---|---|---|
Amount of the useful extinguishing material [kg] | 840 | 832 | 819 | 731 |
Amount of the useless extinguishing material [kg] | 480 | 488 | 501 | 589 |
Useless ratio of the extinguishing material in the ellipse [%] | 36.4 | 37.0 | 37.9 | 44.6 |
Useless ratio of the whole amount of the tank [%] | 86.0 | 86.2 | 86.3 | 87.8 |
Useful ratio of the whole amount of tank [%] | 14.0 | 13.8 | 13.7 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restas, A. Examining the Effectiveness of Aerial Firefighting with the Components of Firebreak Requirements and Footprint Geometry—Critics of the Present Practice. Fire 2023, 6, 351. https://doi.org/10.3390/fire6090351
Restas A. Examining the Effectiveness of Aerial Firefighting with the Components of Firebreak Requirements and Footprint Geometry—Critics of the Present Practice. Fire. 2023; 6(9):351. https://doi.org/10.3390/fire6090351
Chicago/Turabian StyleRestas, Agoston. 2023. "Examining the Effectiveness of Aerial Firefighting with the Components of Firebreak Requirements and Footprint Geometry—Critics of the Present Practice" Fire 6, no. 9: 351. https://doi.org/10.3390/fire6090351
APA StyleRestas, A. (2023). Examining the Effectiveness of Aerial Firefighting with the Components of Firebreak Requirements and Footprint Geometry—Critics of the Present Practice. Fire, 6(9), 351. https://doi.org/10.3390/fire6090351