A New Method for the Determination of Fire Risk Zones in High-Bay Warehouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Parameters for Multi-Criteria Analysis
2.2. Determination of Simulation Parameters Using the COPRAS Method
- Step 1—Creation of the initial decision matrix
- Step 2—Normalization of the decision matrix
- Step 3—Forming the weighted normalized decision matrix
- Step 4—Sum of the weighted normalized values of criteria Vij
- Step 5—Determining the relative importance (weight) of each alternative
- Step 6—Ranking the alternatives
2.3. Three-Dimensional Method for Determining Storage Parameters
2.4. The Procedure for Determining the Coordinates of Potential Risk Zones
Algorithm 1: Algorithm to find pointset of potential fire hazard zones |
INPUT: Pointset Xci, Yci, Zci, Qi |
OUTPUT: X, Y, Z |
Numerator = 0 |
Denominator = 0 |
for i = 1:n |
Numerator_x = Numerator + Xci*Qi |
Numerator_y = Numerator + Yci*Qi |
Numerator_z = Numerator + Zci*Qi |
Denominator = Denominator + Qi |
end |
X = Numerator_X/Denominator |
Y = Numerator_Y/Denominator |
Z = Numerator_Z/Denominator |
Post-processing and presentation of results |
3. Numerical Example
- -
- Variant 1: The first three racks on the left side of the warehouse are completely emptied and the filling of the warehouse with the remaining 840 transport units starts from rack number 4;
- -
- Variant 2: The last three racks on the right side of the warehouse are completely emptied and the filling of the warehouse with the remaining 840 transport units starts from rack number 1;
- -
- Variant 3: The content of each of the racks on the upper front side is reduced by 30%;
- -
- Variant 4: The content of each of the racks on the lower front side is reduced by 30%;
- -
- Variant 5: The content of each of the racks in the uppermost rows is reduced by 30%;
- -
- Variant 6: The content of each of the racks is reduced by 30% in the initial lower rows;
- -
- Variant 7: The content of each of the racks is reduced by 30% and the arrangement of transport units within the racks is carried out randomly.
- -
- Due to the significant difference in the parameters concentration of CO [mg/g] and smoke density [kg/m3] for tire compared to the other materials (case 1), the weight coefficient we5 = 0.45105 of the mentioned material has the highest value, in comparison to the weight coefficients of the other four materials.
- -
- There is no big difference between the weight coefficients wci in case 2 because there is no significant deviation in the values of the parameters related to the thermal characteristics of the stored materials.
4. Results and Discussion
- -
- The X coordinate for variants 7.1 and 7.2 represents approximately the mean value of the X coordinate for pairs 1.1 and 2.1, that is, 1.2 and 2.2, respectively;
- -
- The Y coordinate for variants 7.1 and 7.2 represents approximately the mean value of the Y coordinate for pairs 3.1 and 4.1, that is, 3.2 and 4.2;
- -
- The Z coordinate of variants 7.1 and 7.2 represents approximately the mean value of the Z coordinate of pairs 5.1 and 6.1, that is, 5.2 and 6.2.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkış, S.; Aksoy, E.; Akpınar, K. Risk Assessment of Industrial Fires for Surrounding Vulnerable Facilities Using a Multi-Criteria Decision Support Approach and GIS. Fire 2021, 4, 53. [Google Scholar] [CrossRef]
- Dinaburg, J.; Gottuk, D.T. Fire Detection in Warehouse Facilities; Springer Briefs in Fire; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-8114-0. [Google Scholar]
- Martin, D.; Tomida, M.; Meacham, B. Environmental Impact of Fire. Fire Sci. Rev. 2016, 5, 5. [Google Scholar] [CrossRef]
- D’Evelyn, S.M.; Jung, J.; Alvarado, E.; Baumgartner, J.; Caligiuri, P.; Hagmann, R.K.; Henderson, S.B.; Hessburg, P.F.; Hopkins, S.; Kasner, E.J.; et al. Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to Be Integrated into Forest Restoration and Management. Curr. Environ. Health Rep. 2022, 9, 366–385. [Google Scholar] [CrossRef]
- Fu, G.; Wang, J.; Yan, M. Anatomy of Tianjin Port Fire and Explosion: Process and Causes. Process Saf. Prog. 2016, 35, 216–220. [Google Scholar] [CrossRef]
- Course, M.I. MBC News. Ann. Burns Fire Disasters 2020, 33, 265–266. [Google Scholar]
- Xu, L.; Wang, Y.; Chen, J. Analysis of Characteristics of Fire Incident on 24 July 2021 in Jilin Province, China. Safety 2022, 8, 65. [Google Scholar] [CrossRef]
- Tahmid, M.; Jahan, N.; Tasnim, N.; Syeda, S.R. Major Accident Control in Temporary Storage Facilities: An Investigative Consequence Analysis of the Bangladesh Container Depot Accident 2022. ACS Chem. Health Saf. 2022, 29, 494–505. [Google Scholar] [CrossRef]
- Campbell, R. Warehouse Structure Fires; National Fire Protection Association NFPA, Research, Data and Analytics Division: Quincy, MA, USA, 2022. [Google Scholar]
- Tauseef, S.M.; Abbasi, T.; Pompapathi, V.; Abbasi, S.A. Case Studies of 28 Major Accidents of Fires/Explosions in Storage Tank Farms in the Backdrop of Available Codes/Standards/Models for Safely Configuring Such Tank Farms. Process Saf. Environ. Prot. 2018, 120, 331–338. [Google Scholar] [CrossRef]
- Tyldesley, A.; Rew, P.J.; Houlding, R.C. Benefits of Fire Compartmentation in Chemical Warehouses. Process Saf. Environ. Prot. 2004, 82, 331–340. [Google Scholar] [CrossRef]
- Kátai-Urbán, M.; Bíró, T.; Kátai-Urbán, L.; Varga, F.; Cimer, Z. Identification Methodology for Chemical Warehouses Dealing with Flammable Substances Capable of Causing Firewater Pollution. Fire 2023, 6, 345. [Google Scholar] [CrossRef]
- Ding, L.; Ji, J.; Khan, F.; Li, X.; Wan, S. Quantitative Fire Risk Assessment of Cotton Storage and a Criticality Analysis of Risk Control Strategies. Fire Mater. 2020, 44, 165–179. [Google Scholar] [CrossRef]
- Niu, H.; Li, Z. Application of RAC Method in Fire Risk Assessment of Lithium-Ion Battery Factories. Procedia Eng. 2018, 211, 1115–1119. [Google Scholar] [CrossRef]
- Ramezanifar, E.; Gholamizadeh, K.; Mohammadfam, I.; Mirzaei Aliabadi, M. Risk Assessment of Methanol Storage Tank Fire Accident Using Hybrid FTA-SPA. PLoS ONE 2023, 18, e0282657. [Google Scholar] [CrossRef]
- Jafari, M.J.; Pouyakian, M.; Mozaffari, P.; Laal, F.; Mohamadi, H.; Pour, M.T.; Hanifi, S.M. A New Approach to Chemicals Warehouse Risk Analysis Using Computational Fluid Dynamics Simulation and Fuzzy Bayesian Network. Heliyon 2022, 8, e12520. [Google Scholar] [CrossRef]
- Xie, J.; Li, J.; Wang, J.; Jiang, J.; Shu, C.-M. Fire Risk Assessment in Lithium-Ion Battery Warehouse Based on the Bayesian Network. Process Saf. Environ. Prot. 2023, 176, 101–114. [Google Scholar] [CrossRef]
- Prieto Muñoz, B. Calculating the Risk of Fire in Community Pharmacies. Gustav-Purt Method. Sun 2023, 39, 307–318. [Google Scholar] [CrossRef]
- Ju, W.; Su, G.; Wu, L.; Oforiwaa, P.O. The 3D-Dynamic Fire Risk Evaluation Method of Modern Logistics Warehouses: A Modified Gustav Method. Fire Technol. 2023, 1–34. [Google Scholar] [CrossRef]
- Bošković, G.; Čepić, Z.; Ubavin, D. Determination of Relative Weight Coefficients Based on Thermal Characteristics of Materials Using the F-AHP Method. Eng. Today 2022, 1, 27–32. [Google Scholar] [CrossRef]
- Chanthakhot, W.; Ransikarbum, K. Integrated IEW-TOPSIS and Fire Dynamics Simulation for Agent-Based Evacuation Modeling in Industrial Safety. Safety 2021, 7, 47. [Google Scholar] [CrossRef]
- Alinezhad, A.; Khalili, J. COPRAS Method. In New Methods and Applications in Multiple Attribute Decision Making (MADM); International Series in Operations Research & Management Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 277, pp. 87–91. ISBN 978-3-030-15008-2. [Google Scholar]
- Hurley, M.J.; Gottuk, D.; Hall, J.R.; Harada, K.; Kuligowski, E.; Puchovsky, M.; Torero, J.; Watts, J.M.; Wieczorek, C. (Eds.) SFPE Handbook of Fire Protection Engineering; Springer: New York, NY, USA, 2016; ISBN 978-1-4939-2564-3. [Google Scholar]
- Valipour, A.; Yahaya, N.; Md Noor, N.; Antuchevičienė, J.; Tamošaitienė, J. Hybrid SWARA-COPRAS Method for Risk Assessment in Deep Foundation Excavation Project: An Iranian Case Study. J. Civ. Eng. Manag. 2017, 23, 524–532. [Google Scholar] [CrossRef]
- Pandit, C.P.; Chandra, M.; Choubey, A.; Rajak, S. Selection of Suitable Material for the Solar Panel Using SWARA and COPRAS Method. In Recent Trends in Mechanical Engineering; Maurya, A., Srivastava, A.K., Jha, P.K., Pandey, S.M., Eds.; Lecture Notes in Mechanical Engineering; Springer Nature: Singapore, 2023; pp. 153–162. ISBN 978-981-19770-8-4. [Google Scholar]
- Ganesan, K.P.; Dhilip, J.D.J.; Sivalingam, V.; Duraipalam, A.; Seenivasan, G.; Perumal, G.K.; Karthikeyan, B.; Rajagopal, R.K.; Chandran, M. Machinability Analysis and Optimisation of EDM in AA6082/3 Wt% BN/1 Wt% MoS2 Hybrid Composites Using Entropy Method Weights Integrated with Complex Proportional Assessment (COPRAS) Method. Int. J. Adv. Manuf. Technol. 2022, 123, 4051–4064. [Google Scholar] [CrossRef]
- Sampathkumar, S.; Augustin, F.; Kaabar, M.K.; Yue, X.-G. An Integrated Intuitionistic Dense Fuzzy Entropy-COPRAS-WASPAS Approach for Manufacturing Robot Selection. Adv. Mech. Eng. 2023, 15, 168781322311602. [Google Scholar] [CrossRef]
- Bošković, G.; Todorović, M.; Markovic, G.; Čepić, Z.; Mladenović, P. Multi-Aisle Automated Rack Warehouse Simulation for Average Travel Time; Faculty of Mechanical and Civil Engineering: Kraljevo, Serbia, 2023; pp. A53–A58. [Google Scholar]
- Saderova, J.; Rosova, A.; Sofranko, M.; Kacmary, P. Example of Warehouse System Design Based on the Principle of Logistics. Sustainability 2021, 13, 4492. [Google Scholar] [CrossRef]
- Bolaños-Zuñiga, J.; Salazar-Aguilar, M.A.; Saucedo-Martínez, J.A. Solving Location Assignment and Order Picker-Routing Problems in Warehouse Management. Axioms 2023, 12, 711. [Google Scholar] [CrossRef]
- SinemBüyüksaatçı, Ş. Carbon Emission Based Optimisation Approach for the Facility Location Problem. JOR 2014, 4, 9–20. [Google Scholar]
- Sanjaya, A.; Sembiring, A.C.; Willyanto, W. Determination of the Optimal Distribution Centre Location with Gravity Location Model. J. Phys. Conf. Ser. 2019, 1402, 022041. [Google Scholar] [CrossRef]
- Koohathongsumrit, N.; Chankham, W. A Hybrid Approach of Fuzzy Risk Assessment-Based Incenter of Centroid and MCDM Methods for Multimodal Transportation Route Selection. Cogent. Eng. 2022, 9, 2091672. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, Y.; Bocobo, G.A.; Su, Q.; Zhu, K.; Zhang, Q.; Tan, J. A Novel Tissue Separation Method for Determining Upper Trunk Center of Gravity in Patients with Thoracolumbar Kyphosis Using MIMICS. Clin. Biomech. 2020, 71, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, X. Centroid Computation for Shack-Hartmann Wavefront Sensor in Extreme Situations Based on Artificial Neural Networks. Opt. Express 2018, 26, 31675. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Yang, Z.F.; Wang, H.R.; Yang, X.C. Detection Method of Human Three-Dimensional Body Center of Gravity Based on Inclinometer Network. Sens. Mater. 2017, 27, 1081–1087. [Google Scholar] [CrossRef]
- Rajulu, K.V.; Nandanwar, A.; Kiran, M.C. Evaluation of Smoke Density on Combustion of Wood Based Panel Products. Int. J. Mater. Chem. 2013, 2, 225–228. [Google Scholar] [CrossRef]
- Hirschler, M. Fire Properties of Polyvinyl Chloride; GBI International: Mill Valley, CA, USA, 2017. [Google Scholar]
- Kutz, M. Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-323-52472-8. [Google Scholar]
- Ding, L.; Khan, F.; Ji, J. Risk-Based Safety Measure Allocation to Prevent and Mitigate Storage Fire Hazards. Process Saf. Environ. Prot. 2020, 135, 282–293. [Google Scholar] [CrossRef]
- Chivas, C.; Bertrand, J.-P.; Malvaux, C.; Marlair, G.; Tack, K. Smoke Toxicity from Combustion Products Based on Polymers Containing Flame Retardant Additives. In Proceedings of the Flame Retardants Conference, Stamford, CT, USA, 7–9 June 2006; Interscience Communications: London, UK, 2006; pp. 59–69. [Google Scholar]
- Ślusarczyk, B.; Baryń, M.; Kot, S. Tire Industry Products as an Alternative Fuel. Pol. J. Environ. Stud. 2016, 25, 1263–1270. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, K.; Kang, M.; Zhao, W.; Wei, G.; Yue, J.; Yao, H. Plugging Methods for Underground Gas Extraction Boreholes in Coal Seams: A Review of Processes, Challenges and Strategies. Gas Sci. Eng. 2024, 122, 205225. [Google Scholar] [CrossRef]
- Baydaş, M.; Pamučar, D. Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data. Mathematics 2022, 10, 1115. [Google Scholar] [CrossRef]
- Mentes, D.; Tóth, C.E.; Nagy, G.; Muránszky, G.; Póliska, C. Investigation of Gaseous and Solid Pollutants Emitted from Waste Tire Combustion at Different Temperatures. Waste Manag. 2022, 149, 302–312. [Google Scholar] [CrossRef]
Material | CO [mg/g] | CO2 [mg/g] | Smoke Density [kg/m3] | Ignition Temperature [°C] | Thermal Conductivity [W/mK] | Specific Heat Capacity [J/(kg K)] | Calorific Value [MJ/kg] |
---|---|---|---|---|---|---|---|
Wood | 6 | 1696 | 100 | 350 | 0.15 | 1360 | 14.4 |
Cardboard | 0.1 | 1450 | 39.8 | 427 | 0.061 | 1400 | 13.5 |
Plywood | 6 | 1774 | 400 | 150 | 0.13 | 2500 | 17 |
PVC | 71 | 657 | 55.03 | 391 | 0.185 | 900 | 41 |
Rubber (tire) | 600 | 1911 | 8000 | 315 | 1.85 | 1880 | 35 |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
Unit of Measure | [mg/g] | [mg/g] | [kg/m3] | [°C] | [W/mK] | [J/(kg K)] | [MJ/kg] |
Goal | min | min | min | max | min | max | min |
Beneficial | Non-Beneficial | ||||||
Weights | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 |
A1 | 6 | 1696 | 100 | 350 | 14.4 | 1360 | 0.15 |
A2 | 0.1 | 1450 | 3.8 | 427 | 13.5 | 1400 | 0.061 |
A3 | 6 | 1774 | 400 | 150 | 17 | 2500 | 0.13 |
A4 | 71 | 657 | 55.03 | 391 | 41 | 900 | 0.185 |
A5 | 600 | 1911 | 8000 | 315 | 35 | 1880 | 1.85 |
STEP 1 | |||||||
A1 | 0.00878 | 0.22650 | 0.01168 | 0.21433 | 0.06313 | 0.16915 | 0.11911 |
A2 | 0.00015 | 0.19364 | 0.00044 | 0.26148 | 0.02567 | 0.17413 | 0.11166 |
A3 | 0.00878 | 0.23691 | 0.04674 | 0.09186 | 0.05471 | 0.31095 | 0.14061 |
A4 | 0.10394 | 0.08774 | 0.00643 | 0.23944 | 0.07786 | 0.11194 | 0.33912 |
A5 | 0.87835 | 0.25521 | 0.93471 | 0.19290 | 0.77862 | 0.23383 | 0.28950 |
STEP 2 | |||||||
A1 | 0.00878 | 0.22650 | 0.01168 | 0.21433 | 0.06313 | 0.16915 | 0.11911 |
A2 | 0.00015 | 0.19364 | 0.00044 | 0.26148 | 0.02567 | 0.17413 | 0.11166 |
A3 | 0.00878 | 0.23691 | 0.04674 | 0.09186 | 0.05471 | 0.31095 | 0.14061 |
A4 | 0.10394 | 0.08774 | 0.00643 | 0.23944 | 0.07786 | 0.11194 | 0.33912 |
A5 | 0.87835 | 0.25521 | 0.93471 | 0.19290 | 0.77862 | 0.23383 | 0.28950 |
STEP 3 | |||||||
A1 | 0.00176 | 0.04530 | 0.00234 | 0.02143 | 0.00631 | 0.01692 | 0.01191 |
A2 | 0.00003 | 0.03873 | 0.00009 | 0.02615 | 0.00257 | 0.01741 | 0.01117 |
A3 | 0.00176 | 0.04738 | 0.00935 | 0.00919 | 0.00547 | 0.03109 | 0.01406 |
A4 | 0.02079 | 0.01755 | 0.00129 | 0.02394 | 0.00779 | 0.01119 | 0.03391 |
A5 | 0.17567 | 0.05104 | 0.18694 | 0.01929 | 0.07786 | 0.02338 | 0.02895 |
CASE 1 | |||||||
STEP 4 | STEP 5 | STEP 6 | |||||
S+i | S−i | S−min/S−i | wei | Ui | Rank | ||
0.04939 | 0.0566 | 1 | 0.14821 | 32.8586 | 3 | ||
0.03885 | 0.0573 | 0.98738885 | 0.13642 | 30.2442 | 4 | ||
0.05849 | 0.0598 | 0.94582261 | 0.15195 | 33.6878 | 2 | ||
0.03962 | 0.0768 | 0.73626964 | 0.11238 | 24.9145 | 5 | ||
0.41365 | 0.1495 | 0.37844907 | 0.45105 | 100 | 1 | ||
CASE 2 | |||||||
STEP 4 | STEP 5 | STEP 6 | |||||
S+i | S−i | S−min/S−i | wci | Ui | Rank | ||
0.03364 | 0.07181 | 0.890464834 | 0.191791 | 82.62265 | 4 | ||
0.03168 | 0.06584 | 0.971262209 | 0.204186 | 87.96209 | 3 | ||
0.05135 | 0.06871 | 0.930749428 | 0.216658 | 93.33521 | 2 | ||
0.05452 | 0.06395 | 1 | 0.232129 | 100 | 1 | ||
0.12880 | 0.42969 | 0.148824442 | 0.155235 | 66.87452 | 5 |
Variant | X | Y | Z | r | R | View | Variant | X | Y | Z | r | R | View |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variant 1.1 | 13.85 | 12.11 | 5.05 | 19.08 | 1.054 | Variant 1.2 | 12.19 | 11.98 | 4.76 | 17.74 | 1.038 | ||
Variant 2.1 | 7.94 | 12.11 | 5.05 | 15.34 | 0.742 | Variant 2.2 | 6.38 | 11.95 | 4.76 | 14.36 | 1.142 | ||
Variant 3.1 | 11.61 | 8.40 | 4.80 | 15.11 | 1.018 | Variant 3.2 | 9.23 | 8.40 | 4.80 | 13.37 | 1.584 | ||
Variant 4.1 | 11.61 | 15.60 | 4.8 | 20.03 | 1.018 | Variant 4.2 | 9.23 | 15.60 | 4.80 | 18.75 | 1.584 | ||
Variant 5.1 | 11.51 | 11.56 | 3.45 | 16.67 | 0.648 | Variant 5.2 | 9.12 | 11.57 | 3.47 | 15.14 | 1.249 | ||
Variant 6.1 | 11.61 | 12.46 | 6.21 | 18.13 | 0.654 | Variant 6.2 | 9.23 | 12.46 | 6.21 | 16.70 | 1.379 | ||
Variant 7.1 | 11.61 | 11.84 | 4.89 | 17.29 | 0.862 | Variant 7.2 | 9.23 | 11.84 | 4.87 | 15.78 | 1.493 |
Variant | X | Y | Z | r | R | View | Variant | X | Y | Z | r | R | View |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variant 1.1 | 10.73 | 11.89 | 4.56 | 16.65 | 0.757 | Variant 1.2 | 12.56 | 12 | 4.82 | 18.03 | 1.242 | ||
Variant 2.1 | 4.82 | 11.90 | 4.56 | 13.62 | 0.976 | Variant 2.2 | 6.76 | 12 | 4.82 | 14.59 | 1.006 | ||
Variant 3.1 | 7.01 | 8.40 | 4.80 | 11.95 | 1 | Variant 3.2 | 9.78 | 8.40 | 4.80 | 13.76 | 1.426 | ||
Variant 4.1 | 7.01 | 15.60 | 4.8 | 17.76 | 1 | Variant 4.2 | 9.78 | 15.60 | 4.80 | 19.03 | 1.426 | ||
Variant 5.1 | 6.97 | 11.56 | 3.45 | 13.93 | 0.578 | Variant 5.2 | 9.66 | 11.57 | 3.48 | 15.47 | 1.262 | ||
Variant 6.1 | 7.01 | 12.46 | 6.21 | 15.59 | 0.626 | Variant 6.2 | 9.78 | 12.46 | 6.21 | 17.01 | 1.193 | ||
Variant 7.1 | 7.05 | 11.82 | 4.88 | 14.60 | 0.838 | Variant 7.2 | 9.78 | 11.84 | 4.87 | 16.11 | 1.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bošković, G.; Todorović, M.; Ubavin, D.; Stepanov, B.; Mihajlović, V.; Perović, M.; Čepić, Z. A New Method for the Determination of Fire Risk Zones in High-Bay Warehouses. Fire 2024, 7, 149. https://doi.org/10.3390/fire7040149
Bošković G, Todorović M, Ubavin D, Stepanov B, Mihajlović V, Perović M, Čepić Z. A New Method for the Determination of Fire Risk Zones in High-Bay Warehouses. Fire. 2024; 7(4):149. https://doi.org/10.3390/fire7040149
Chicago/Turabian StyleBošković, Goran, Marko Todorović, Dejan Ubavin, Borivoj Stepanov, Višnja Mihajlović, Marija Perović, and Zoran Čepić. 2024. "A New Method for the Determination of Fire Risk Zones in High-Bay Warehouses" Fire 7, no. 4: 149. https://doi.org/10.3390/fire7040149
APA StyleBošković, G., Todorović, M., Ubavin, D., Stepanov, B., Mihajlović, V., Perović, M., & Čepić, Z. (2024). A New Method for the Determination of Fire Risk Zones in High-Bay Warehouses. Fire, 7(4), 149. https://doi.org/10.3390/fire7040149