Thirty Years of Progress in Our Understanding of the Nature and Influence of Fire in Carboniferous Ecosystems
Abstract
:1. Introduction
1.1. Modern Fires and Charcoal Formation
1.2. Use of Reflectance
1.3. Microscopical Developments since 1994
1.4. Post-Fire Erosion
1.5. Carboniferous Case Histories
1.6. Wildfire, Climate, and Atmosphere with Plant Trait Evolution
1.6.1. Fire and Atmospheric Oxygen
1.6.2. Wildfire and Climate
1.6.3. Evolution of Plant Traits
2. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Harris, T.M. Forest fire in the Mesozoic. J. Ecol. 1958, 46, 447–453. [Google Scholar] [CrossRef]
- Harris, T.M. A Liasso-Rhaetic flora in South Wales. Proc. R. Soc. Lond. Ser. B 1957, 147, 289–308. [Google Scholar]
- Stopes, M.C. On the four visible ingredients in banded bituminous coal. Proc. R. Soc. Ser. B 1919, 90, 470–487. [Google Scholar]
- Schopf, J.M. Modes of fossil preservation. Rev. Palaeobot. Palynol. 1975, 20, 27–53. [Google Scholar] [CrossRef]
- Scott, A.C. Observations on the nature and origin of fusain. Int. J. Coal Geol. 1989, 12, 443–475. [Google Scholar] [CrossRef]
- Scott, A. The earliest conifer. Nature 1974, 251, 707–708. [Google Scholar] [CrossRef]
- Teichmüller, M. Origin of the petrographic constituents of coal. In Stach’s Textbook of Coal Petrology, 2nd ed.; Stach, E., Mackowsky, M.-T., Teichmiiller, M., Taylor, G.H., Chandra, D., Teichmüller, R., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1975; pp. 176–238. [Google Scholar]
- Teichmüller, M. The genesis of coal from the viewpoint of coal petrology. Int. J. Coal Geol. 1989, 12, 1–87. [Google Scholar] [CrossRef]
- Scott, A.C.; Collinson, M.E. Organic sedimentary particles: Results from Scanning Electron Microscope studies of fragmentary plant material. In Scanning Electron Microscopy in the Studies of Sediments; Whalley, W.B., Ed.; Geoabstracts: Norwich, UK, 1978; pp. 137–167. [Google Scholar]
- Cope, M.J. Products of natural burning as a component of the dispersed organic matter of sedimentary rocks. In Organic Maturation Studies and Fossil Fuel Exploration; Brooks, J., Ed.; Academic Press: London, UK, 1981; pp. 89–109. [Google Scholar]
- Cope, M.J.; Chaloner, W.G. Fossil charcoal as evidence of past atmospheric composition. Nature 1980, 283, 647–649. [Google Scholar] [CrossRef]
- Cope, M.J.; Chaloner, W.G. Wildfire, an interaction of biological and physical processes. In Geological Factors and the Evolution of Plants; Tiffney, B.H., Ed.; Yale University Press: Hartford, CT, USA, 1985; pp. 257–277. [Google Scholar]
- Jones, T.P.; Chaloner, W.G. Fossil charcoal, its recognition and palaeoatmospheric significance. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 97, 39–50. [Google Scholar] [CrossRef]
- Jones, T.P.; Scott, A.C.; Cope, M. Reflectance measurements and temperature of formation of modern charcoals and implications for studies of fusain. Bull. De La Société Géologique De Fr. 1991, 162, 193–200. [Google Scholar]
- Nichols, G.; Jones, T.P. Fusain in Carboniferous shallow marine sediments, Donegal, Ireland: The sedimentological effects of wildfire. Sedimentology 1992, 39, 487–502. [Google Scholar] [CrossRef]
- Scott, A.C. Environmental Control of Westphalian Plant Assemblages from Northern Britain. Ph.D. Thesis, University of London, London, UK, 1976. Volume 2. 383p. [Google Scholar]
- Scott, A.C. A review of the ecology of Upper Carboniferous plant assemblages with new data from Strathclyde. Palaeontology 1977, 20, 447–473. [Google Scholar]
- Scott, A.C. The ecology of Coal Measure Floras from Northern Britain. Proc. Geol. Assoc. 1979, 90, 97–116. [Google Scholar] [CrossRef]
- Scott, A.C.; Jones, T.P. Microscopical observations of Recent and fossil charcoal. Microsc. Anal. 1991, 25, 13–15. [Google Scholar]
- Scott, A.C.; Jones, T.J. The nature and influence of fires in Carboniferous ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 106, 91–112. [Google Scholar] [CrossRef]
- Ahlgren, C.E. Introduction. In Fire and Ecosystems; Kozolwski, T.T., Ahlgren, C.E., Eds.; Academic Press: New York, NY, USA, 1974; pp. 1–5. [Google Scholar]
- Cohen, A.D. Evidence of fires in the ancient Everglades and coastal swamps of Southern Florida. In Environments of South Florida, Present and Past, Miami Geological Society Memoir; Miami Geological Society: Miami, FL, USA, 1974; pp. 213–218. [Google Scholar]
- Davis, K.P. Forest Fire—Control and Use; McGraw-Hill: New York, NY, USA, 1959; 584p. [Google Scholar]
- Rundel, P.W. Fire as an ecological factor. In Physiological Plant Ecology I. Response to the Physical Environment; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer: Berlin/Hiedelberg, Germany, 1981; pp. 501–538. [Google Scholar]
- Scott, D.F.; Curran, M.P.; Robichaud, P.R.; Wagenbrenner, J.W. Soil erosion after forest fire. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P., Eds.; Science Publishers Inc.: Enfield, NH, USA, 2009; pp. 179–196. [Google Scholar]
- Scott, A.C. The Pre-Quaternary History of Fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Scott, A.C.; Glasspool, I.J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl. Acad. Sci. USA 2006, 103, 10861–10865. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.C.; Bowman, D.J.M.S.; Bond, W.J.; Pyne, S.J.; Alexander, M. Fire on Earth: An Introduction; John Wiley and Sons: Chichester, UK, 2014; 413p. [Google Scholar]
- Scott, A.C. Preservation by fire. In Palaeobiology II; Briggs, D.E.G., Crowther, P.R., Eds.; Blackwell Science: Oxford, UK, 2001; pp. 277–280. [Google Scholar]
- Komarek, E.V. Ancient fires. Proc. Annu. Tall Timbers Fire Ecol. Conf. 1972, 12, 219–240. [Google Scholar]
- Komarek, E.V.; Komarek, B.B.; Carlysle, T.C. The Ecology of Smoke Particulates and Charcoal Residue from Forest and Grassland Fires: A Preliminary Atlas; Miscellaneous Publication 3; Tall Timbers Research Station: Tallahassee, FL, USA, 1973. [Google Scholar]
- Griffin, J.J.; Goldberg, E.D. Morphologies and origin of elemental carbon in the environment. Science 1979, 206, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Patterson, W.A., III; Edwards, K.J.; Maguire, D.J. Microscopic charcoals as a fossil indicator of fire. Quat. Sci. Rev. 1987, 6, 13–23. [Google Scholar] [CrossRef]
- Clark, J.S. Particle motion and the theory of charcoal analysis: Source area, transport, deposition and sampling. Quat. Res. 1988, 30, 67–80. [Google Scholar] [CrossRef]
- Clark, J.S.; Patterson, W.A., III. Background and local charcoal in sediments: Scales of fire evidence in the palaeo record. In Sediment Records of Biomass Burning and Global Change; Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B., Eds.; NATO ASI Series (ASI I); Springer: Berlin/Hiedelberg, Germany, 1997; Volume 51, pp. 23–48. [Google Scholar]
- Clark, J.S.; Robinson, J. Palaeoecology of fire. In Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires; Crutzen, P.J., Goldammer, J.G., Eds.; Dahlem Workshop Reports; Environmental Science Research Reports No. 13; Wiley: Chichester, UK, 1993; pp. 193–214. [Google Scholar]
- Despain, D.; Rodman, A.; Schullery, P.; Shovic, H. Burned Area Survey of Yellowstone National Park: The Fires of 1988; US. Department of the Interior, National Park Service: Yellowstone National Park, WY, USA, 1989; 14p. [Google Scholar]
- Meyer, G.A.; Pierce, J.L. Climatic controls on fire-induced sediment pulses in Yellowstone National Park and central Idaho: A long-term perspective. For. Ecol. Manag. 2003, 178, 89–104. [Google Scholar] [CrossRef]
- Meyer, G.A.; Wells, S.G.; Bailing, R.C.; Jull, A.J.T. Response of alluvial systems to fire and climate change in Yellowstone National Park. Nature 1992, 357, 147–150. [Google Scholar] [CrossRef]
- Wuerthner, G. Yellowstone and the Fires of Change; Haggis House Publications: Salt Lake City, UT, USA, 1988. [Google Scholar]
- Scott, A.C.; Cripps, J.A.; Nichols, G.J.; Collinson, M.E. The taphonomy of charcoal following a recent heathland fire and some implications for the Interpretation of fossil charcoal deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 1–31. [Google Scholar] [CrossRef]
- Scott, A.C. Forest Fire in the Fossil Record. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P., Eds.; Science Publishers Inc.: Enfield, NH, USA, 2009; pp. 1–37. [Google Scholar]
- Scott, A.C. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 11–39. [Google Scholar] [CrossRef]
- Belcher, C.M.; New, S.L.; Santín, C.; Doerr, S.H.; Dewhirst, R.A.; Grosvenor, M.J.; Hudspith, V.A. What Can Charcoal Reflectance Tell Us About Energy Release in Wildfires and the Properties of Pyrogenic Carbon? Front. Earth Sci. 2018, 6, 169. [Google Scholar] [CrossRef]
- Hudspith, V.A.; Hadden, R.M.; Bartlett, A.I.; Belcher, C.M. Does fuel type influence the amount of charcoal produced in wildfires? Implications for the fossil record. Palaeontology 2017, 61, 159–171. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Shakesby, R.A.; Bryant, R.; Sheridan, G.J.; Lane, P.N.J.; Smith, H.G.; Bell, T.L. Carbon loads, forms and sequestration potential within ash deposits produced by wildfire: New insights from the 2009 ‘Black Saturday’ fires, Australia. Eur. J. For. Res. 2012, 131, 1245–1253. [Google Scholar] [CrossRef]
- Scott, A.C. Burning Planet. The Story of Fire through Time; Oxford University Press: Oxford, UK, 2018; 224p, ISBN 978-0-19-873484-0. (In Spanish and Japanese). [Google Scholar]
- Scott, A.C. Fire: A Very Short Introduction; Oxford University Press: Oxford, UK, 2020; 156p. [Google Scholar]
- Scott, A.C. Charcoalified vegetation from the Pennsylvanian of Yorkshire, England: Implications for the interpretation of Carboniferous wildfires. Rev. Palaeobot. Palynol. 2022, 296, 104540. [Google Scholar] [CrossRef]
- Scott, A.C.; Collinson, M.E. A note on the charring of spores and implications for coal petrographic analysis. Int. J. Coal Geol. 2020, 219, 103361. [Google Scholar] [CrossRef]
- Correia, M.; Maury, R.; Arai, F. Mesure par leur pouvoir re’flecteur, des temperatures de carbonisation des bois fossilise’s dans les formations volcanique. Bull. Du Cent. De Rech. De Pau 1974, 8, 527–536. [Google Scholar]
- Brown, R.E.; Scott, A.C.; Jones, T.P. Taphonomy of fossil plants from the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. Earth Sci. 1994, 84, 267–274. [Google Scholar] [CrossRef]
- Scott, A.C. Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In Volcanism and Fossil Biotas; Lockley, M.G., Rice, A., Eds.; Geological Society of America Special Publication: Boulder, CO, USA, 1990; Volume 244, pp. 25–38. [Google Scholar]
- Scott, A.C.; Glasspool, I.J. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 2005, 33, 589–592. [Google Scholar] [CrossRef]
- Bull, I.D.; Knicker, H.; Poirier, N.; Porter, H.C.; Scott, A.C.; Sparks, R.S.J.; Evershed, R.P. Biomolecular characteristics of an extensive tar layer generated during eruption of the Soufrière Hills volcano, Montserrat, West Indies. Org. Geochem. 2008, 39, 1372–1383. [Google Scholar] [CrossRef]
- Scott, A.C.; Sparks, R.S.J.; Bull, I.D.; Knicker, H.; Evershed, R.P. Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology 2008, 36, 143–146. [Google Scholar] [CrossRef]
- Hudspith, V.A.; Scott, A.C.; Wilson, C.J.N.; Collinson, M.E. Charring of woods by volcanic processes: An example from the Taupo Ignimbrite, New Zealand. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 40–51. [Google Scholar] [CrossRef]
- McParland, L.C.; Collinson, M.E.; Scott, A.C.; Steart, D.C.; Grassineau, N.J.; Gibbons, S.J. Ferns and fires: Experimental charring of ferns compared to wood and implications for paleobiology, paleoecology, coal petrology, and isotope geochemistry. Palaios 2007, 22, 528–538. [Google Scholar] [CrossRef]
- Scott, A.C.; Glasspool, I.J. Observations and experiments on the origin and formation of inertinite group macerals. Int. J. Coal Geol. 2007, 70, 53–66. [Google Scholar] [CrossRef]
- McParland, L.C.; Collinson, M.E.; Scott, A.C.; Campbell, G. The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeol. Anthropol. Sci. 2009, 1, 249–261. [Google Scholar] [CrossRef]
- Belcher, C.M.; Hudspith, V.A. The formation of charcoal reflectance and its potential use in post-fire assessments. Int. J. Wildland Fire 2016, 25, 775–779. [Google Scholar] [CrossRef]
- Belcher, C.M.; New, S.L.; Gallagher, M.R.; Grosvenor, M.J.; Clark, K.; Skowronski, N.S. Bark charcoal reflectance may have the potential to estimate the heat delivered to tree boles by wildland fires. Int. J. Wildland Fire 2021, 30, 391–397. [Google Scholar] [CrossRef]
- Roos, C.I.; Scott, A.C. A Comparison of Charcoal Reflectance between Crown and Surface Fire Contexts in Dry Southwest US Forests. Int. J. Wildland Fire 2018, 27, 396–406. [Google Scholar] [CrossRef]
- Theurer, T.; Naszarkowski, N.; Muirhead, D.K.; Jolley, D.; Mauquoy, D. Assessing Modern Calluna Heathland Fire Temperatures Using Raman Spectroscopy: Implications for Past Regimes and Geothermometry. Front. Earth Sci. 2022, 10, 827933. [Google Scholar] [CrossRef]
- Friis, E.M. Preliminary report of Upper Cetaceous angiosperm reproductive organs from Sweden and their level of organization. Ann. Mo. Bot. Gard. 1984, 71, 403–418. [Google Scholar] [CrossRef]
- Pearson, A.; Scott, A.C. Large palynomorphs and debris. In Fossil Plants and Spores: Modern Techniques; Jones, T.P., Rowe, N.P., Eds.; Geological Society: London, UK, 1999; pp. 20–25. [Google Scholar]
- Herendeen, P.S.; Magallon-Puebla, S.; Lupia, R.; Crane, P.R.; Kobylinska, J. A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of the central Georgia, USA. Ann. Mo. Bot. Gard. 1999, 86, 407–471. [Google Scholar] [CrossRef]
- Friis, E.M.; Crane, P.R.; Pedersen, K.P.; Bengtson, S.; Donoghue, P.C.J.; Grimm, G.W.; Stampanoni, M. Phase- contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales. Nature 2007, 450, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.C.; Galtier, J.; Gostling, N.J.; Smith, S.Y.; Collinson, M.E.; Stampanoni, M.; Marone, F.; Donoghue, P.C.J.; Bengtson, S. Scanning Electron Microscopy and Synchrotron Radiation X-ray Tomographic Microscopy of 330 million year old charcoalified seed fern fertile organs. Microsc. Microanal. 2009, 15, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.C.; Hilton, J.; Galtier, J.; Stampanoni, M. A charcoalified ovule adapted for wind dispersal and deterring herbivory from the Late Viséan (Carboniferous) of Scotland. Int. J. Plant Sci. 2019, 180, 1059–1074. [Google Scholar] [CrossRef]
- Scott, A.C. Carboniferous wildfire revisited: Wildfire, post-fire erosion and deposition in a Mississippian crater lake. Proc. Geol. Assoc. 2024, in press. [Google Scholar]
- Swanson, F.J. Fire and geomorphic processes. In Fire Regimes and Ecosystem Properties; Mooney, H.A., Bonnicksen, T.H., Christensen, N.L., Lotan, J.E., Reiners, W.A., Eds.; USDA Forestry Service General Technical Report WO-26; USDA Forestry Service: Washinghton, DC, USA, 1981; pp. 401–420. [Google Scholar]
- Cannon, S.H. Debris flow generation from recently burned watersheds. Environ. Eng. Geosci. 2001, 7, 321–341. [Google Scholar] [CrossRef]
- Pierce, J.L.; Meyer, G.A.; Jull, A.J.T. Fire induced erosion and millennial-scale climate change in northern Ponderosa pine forests. Nature 2004, 432, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.A.; Martin, D.A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth Surf. Process Landf. 2001, 26, 1049–1070. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Wildfire impacts on reservoir sedimentation in the western United States. In Proceedings of the Ninth International Symposium on River Sedimentation, Yichang, China, 18–21 October 2004; Tsinghua University Press: Beijing, China, 2004; pp. 1095–1102. [Google Scholar]
- Moody, J.A.; Martin, D.A. Forest fire effects on geomorphic processes. In Fire Effects on Soils and Restoration Strategies; Cerda, A., Robichaud, P., Eds.; Science Publishers, Inc.: Enfield, NH, USA, 2009; pp. 41–79. [Google Scholar]
- Falcon-Lang, H.J. The impact of wildfire on an Early Carboniferous coastal system. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 139, 121–138. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J. Fire ecology of a Late Carboniferous floodplain, Joggins, Nova Scotia. J. Geol. Soc. Lond. 1999, 156, 137–148. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J. Late Carboniferous tropical fire ecology: Evidence from eastern Canada. Acta Palaeobot. 1999, (Supp. S2), 27–31. Available online: https://archiwum.botany.pl/ibwyd/acta_paleo/act-sup2.htm (accessed on 7 July 2024).
- Falcon-Lang, H.J. Fire ecology of the Carboniferous tropical zone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 339–355. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J.; Scott, A.C. Upland ecology of some Late Carboniferous Cordaitalean trees from Nova Scotia and England. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 156, 225–242. [Google Scholar] [CrossRef]
- Brown, S.A.E.; Collinson, M.E.; Scott, A.C. Did fire play a role in formation of dinosaur-rich deposits? An example from the Late Cretaceous of Canada. Palaeobiodivers. Palaeoenviron. 2013, 93, 317–326. [Google Scholar] [CrossRef]
- Muir, R.A.; Bordy, E.M.; Preve, R. Lower Cretaceous d posit reveals first evidence of a post-wildfire debris flow in the Kirkwood Formation, Algoa Basin Eastern Cape, South Africa. Cretac. Res. 2015, 56, 161–179. [Google Scholar] [CrossRef]
- Scott, A.C. The use of charcoal to interpret Cretaceous wildfires and volcanic activity. Global Geol. 2019, 22, 217–241. [Google Scholar] [CrossRef]
- Vaughan, A.; Nichols, G.J. Controls on the deposition of charcoal: Implications for sedimentary accumulations of fusain. J. Sediment. Res. 1995, 65, 129–135. [Google Scholar]
- Nichols, G.J.; Cripps, J.; Collinson, M.E.; Scott, A.C. Experiments in waterlogging and sedimentology of charcoal: Results and implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 43–56. [Google Scholar] [CrossRef]
- Nichols, G.J. Experimental sedimentology. In Fossil Plants and Spores: Modern Techniques; Rowe, N.P., Ed.; Geological Society of London: London, UK, 1999; pp. 189–193. [Google Scholar]
- Robichaud, P. Post-fire stabilization and rehabilitation. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P., Eds.; Science Publishers Inc.: Enfield, NH, USA, 2009; pp. 299–320. [Google Scholar]
- Graham, R.T. (Ed.) Hayman Fire Case Study; Gen. Tech. Rep. RMRS-GTR-114; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2003; 396p. [Google Scholar]
- MacDonald, L.H.; Larsen, I.J. Effects of forest fire and post-fire rehabilitation. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P., Eds.; Science Publishers Inc.: Enfield, NH, USA, 2009; pp. 423–452. [Google Scholar]
- Doerr, S.; Santin Nuno, C. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar]
- Bodi, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Artemi Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Glasspool, I.J.; Scott, A.C. Identifying past fire events. In Fire Phenomena in the Earth System—An Interdisciplinary Approach to Fire Science; Belcher, C.M., Ed.; John Wiley and Sons: Chichester, England, 2013; pp. 179–206. [Google Scholar]
- Santin Nuno, C.; Doerr, S.; Preston, C.; González-Rodríguez, G. Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle. Glob. Chang. Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef] [PubMed]
- Santin Nuno, C.; Doerr, S.; Kane, E.; Masiello, C.; Ohlson, M.; Rosa, J.; Preston, C.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Bistarelli, L.T.; Poyntner, C.; Santín, C.; Doerr, S.H.; Talluto, M.V.; Singer, G.; Sigmund, G. Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. ACS EST Water 2021, 1, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.M. Morphometric reconstruction, palaeobiology and phylogeny of Oxroadia gracilis Alvin emend. and O. conferta sp. nov.: Anatomically-preserved rhizomorphic lycopsids from the Dinantian of Oxroad Bay, SE Scotland. Palaeontogr. Abt. B 1992, 228, 29–103. [Google Scholar]
- Scott, A.C.; Galtier, J.; Clayton, G. The distribution of Lower Carboniferous anatomically preserved floras in Western Europe. Trans. R. Soc. Edinb. Earth Sci. 1984, 75, 311–340. [Google Scholar] [CrossRef]
- Scott, A.C.; Meyer-Berthaud, B.; Galtier, J.; Rex, G.M.; Brindley, S.A.; Clayton, G. Studies on a new Lower Carboniferous flora from Kingswood near Pettycur, Scotland. 1. Preliminary report. Rev. Palaeobot. Palynol. 1986, 48, 161–180. [Google Scholar] [CrossRef]
- Rex, G.M.; Scott, A.C. The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. Geol. Mag. 1987, 124, 43–66. [Google Scholar] [CrossRef]
- Scott, A.C.; Galtier, J. The distribution and ecology of early ferns. Proc. R. Soc. Edinb. B 1985, 86, 141–149. [Google Scholar] [CrossRef]
- Rolfe, W.D.I.; Durant, G.M.; Fallick, A.E.; Hall, A.J.; Large, D.J.; Scott, A.C.; Smithson, T.R.; Walkden, G.M. An early terrestrial biota preserved by Viséan vulcanicity in Scotland. In Volcanism and Fossil Biotas; Lockley, M.G., Rice, A., Eds.; Geological Society of America Special Publication: Boulder, CO, USA, 1990; Volume 244, pp. 13–24. [Google Scholar]
- Jones, T.P.; Scott, A.C.; Mattey, D. Investigations of “fusain transition fossils” from the Lower Carboniferous: Comparisons with modern partially charred wood. Int. J. Coal Geol. 1993, 22, 37–59. [Google Scholar] [CrossRef]
- Galtier, J.; Scott, A.C. Anatomically preserved woody gymnosperms from the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. Earth Sci. 1994, 84, 261–266. [Google Scholar]
- Scott, A.C.; Brown, R.E.; Galtier, J.; Meyer-Berthaud, B. Fossil plants from the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. Earth Sci. 1994, 84, 249–260. [Google Scholar] [CrossRef]
- Clarkson, E.N.K.; Milner, A.R.; Coates, M.I. Palaeoecology of the Viséan of East Kirkton, West Lothian, Scotland. Trans. R. Soc. Edinb. Earth Sci. 1994, 84, 417–425. [Google Scholar] [CrossRef]
- Scott, A.C. The Anatomically preserved Early Carboniferous flora of Pettycur, Fife, Scotland. Proc. Geol. Assoc. 2024, in press. [CrossRef]
- Clack, J.; Bennett, C.E.; Davies, S.J.; Scott, A.C.; Sherwin, J.; Smithson, T.R. A Tournaisian (earliest Carboniferous) conglomerate preserved non-marine faunal assemblage and its environmental and sedimentological context. PeerJ 2019, 2019, e5972. [Google Scholar] [CrossRef] [PubMed]
- Kearsey, T.I.; Bennett, C.E.; Millward, D.; Davies, S.J.; Gowing CJ, B.; Kemp, S.J.; Leng, M.J.; Marshall JE, A.; Browne, M.A.E. The terrestrial landscapes of tetrapod evolution in earliest Carboniferous seasonal wetlands of SE Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 457, 52–69. [Google Scholar] [CrossRef]
- Millward, D.; Davies, S.J.; Brand, P.J.; Browne, M.A.E.; Bennett, C.E.; Kearsey, T.I.; Sherwin, J.E.; Marshall, J.E.A. Palaeogeography of tropical seasonal coastal wetlands in northern Britain during the early Mississippian Romer’s Gap. Earth Environ. Trans. R. Soc. Edinb. 2019, 109, 279–300. [Google Scholar] [CrossRef]
- Scott, A.C. Volcanoes, fires and the Lower Carboniferous vegetation of Scotland. J. Open Univ. Geol. Soc. 1988, 8, 27–31. [Google Scholar]
- Scott, A.C.; Chaloner, W.G. The earliest fossil conifer from the Westphalian B of Yorkshire. Proc. R. Soc. Lond. B 1983, 220, 163–182. [Google Scholar]
- Scott, A.C. Sedimentological and ecological control of Westphalian B plant assemblages from West Yorkshire. Proc. Yorks. Geol. Soc. 1978, 41, 461–508. [Google Scholar] [CrossRef]
- Scott, A.C. Studies on the sedimentology, palaeontology and palaeoecology of the Middle Coal Measures, (Westphalian B, Upper Carboniferous) at Swillington, Yorkshire. I. Introduction. Trans. Leeds Geol. Assoc. 1984, 10, 1–16. [Google Scholar]
- Hower, J.C.; Calder, J.H.; Eble, C.F.; Scott, A.C.; Robertson, J.D.; Blanchard, L.J. Metalliferous coals of the Westphalian A Joggins Formation, Cumberland Basin, Nova Scotia: Petrology, geochemistry, and palynology. Int. J. Coal Geol. 2000, 42, 185–206. [Google Scholar] [CrossRef]
- Scott, A.C. Coal petrology and the origin of coal macerals: A way ahead? Int. J. Coal Geol. 2002, 50, 119–134. [Google Scholar] [CrossRef]
- Scott, A.C. The Legacy of Charles Lyell: Advances in our knowledge of coal and coal-bearing strata. In Lyell: The Past is the Key to the Present; Blundell, D.J., Scott, A.C., Eds.; Geological Society of America Special Publication: Boulder, CO, USA, 1998; Volume 143, pp. 243–260. [Google Scholar]
- Calder, J.H.; Gibling, M.R.; Scott, A.C.; Davies, S.J.; Hebert, B.L. A fossil lycopsid forest succession in the classic Joggins section of Nova Scotia: Paleoecology of a disturbance-prone Pennsylvanian wetland. In Geological Society of America Special Paper 399; Greb, S.J., DiMichele, W.A., Eds.; Wetlands Through Time; GSA: Boulder, CO, USA, 2006; pp. 169–194. [Google Scholar]
- Scott, A.C. Roasted alive in the Carboniferous. Geoscientist 2001, 11, 4–7. [Google Scholar]
- Galtier, J.; Scott, A.C.; Powell, J.H.; Glover, B.W.; Waters, C.N. Anatomically preserved conifer-like stems from the Upper Carboniferous of England. Proc. R. Soc. Lond. B 1992, 247, 211–214. [Google Scholar]
- Plotnick, R.E.; Kenig, F.; Scott ACGlasspool, I.J.; Eble, C.F.; Lang, W. Pennsylvanian paleokarst and cave fills from Northern Illinois, U.S.A.: A window into Late Carboniferous environments and landscapes. Palaios 2009, 24, 627–637. [Google Scholar] [CrossRef]
- Scott, A.C.; Kenig, F.; Plotnick, R.E.; Glasspool, I.J.; Chaloner, W.G.; Eble, C.F. Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 72–84. [Google Scholar] [CrossRef]
- Looy, C.; Muddiman, B.; Duijnstee, I. What burned where and when in the Carboniferous coal swamps? Tales from a 300-Myr-old, 23-Myr-long fossil record. In Proceedings of the Abstract O-113, Abstracts of the XV International Palynological Congress and XI International Organization of Palaeobotany Conference, Prague, Czech Republic, 27–31 May 2024; p. 62. [Google Scholar]
- Benício, J.R.W.; Jasper, A.; Spiekermann, R.; Rockenbach, C.I.; Cagliar, J.; Pires-Oliveira, E.F.; Uhl, D. The first evidence of palaeo-wildfire from the Itararé Group, southernmost portion of the Paraná Basin, Brazil. J. S. Am. Earth Sci. 2019, 93, 155–160. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, H.; Wan, S.; Wang, J.; Wan, M. Mesofossils with noeggerathialean affinity based on epidermal characteristics from the Mississippian (lower Carboniferous) of Gansu Province, northwestern China. Rev. Palaeobot. Palynol. 2021, 290, 104432. [Google Scholar] [CrossRef]
- Cheng, C.; Wan, M.L.; Yan, M.X.; Zhou, W.M.; Wang, J. First record of charcoalified sphenopterid mesofossils from the Serpukhovian (Mississippian, early Carboniferous) Jingyuan (Tsingyuan) Formation in Gansu Province, western China. Palaeoworld 2017, 26, 479–488. [Google Scholar] [CrossRef]
- Uhl, D.; Agnihotri, D.; El Atfy, H.; Murthy, S.; Spiekermann, R.; Jasper, A. Late Palaeozoic wildfires on Gondwana—An update. In Proceedings of the Abstract O-255, Abstracts of the XV International Palynological Congress and XI International Organization of Palaeobotany Conference, Prague, Czech Republic, 27–31 May 2024; pp. 136–137. [Google Scholar]
- Watson, A.; Lovelock, J.E.; Margulis, L. Methanogenesis, fires and the regulation of atmospheric oxygen. Biosystems 1978, 10, 293–298. [Google Scholar] [CrossRef]
- Berner, R.A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Et Cosmochim. Acta 2006, 70, 5653–5664. [Google Scholar] [CrossRef]
- Berner, R.A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 2009, 309, 603–606. [Google Scholar] [CrossRef]
- Berner, R.A.; Beerling, D.J.; Dudley, R.; Robinson, J.M.; Wildman, R.A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 2003, 31, 105–134. [Google Scholar] [CrossRef]
- Wildman, R.A., Jr.; Hickey, L.J.; Berner, R.A.; Robinson, J.M.; Dietrich, M.; Essenhigh, R.H.; Wildman, C.R. Burning of forest materials under late Paleozoic high atmospheric oxygen levels. Geology 2004, 32, 457–460. [Google Scholar] [CrossRef]
- Belcher, C.M.; McElwain, J.C. Limits for combustion in low O2 redefine Paleoatmospheric predictions for the Mesozoic. Science 2008, 321, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Belcher, C.M.; Yearsley, J.M.; Hadden, R.M.; McElwain, J.C.; Rein, G. Baseline intrinsic flammability of Earth’s ecosystems estimated from Paleoatmospheric oxygen over the past 350 million years. Proc. Natl. Acad. Sci. USA 2010, 107, 22448–22453. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, S.M.; Hawkins, S.J.; Scott, A.C.; Cressler, W.L. The rise of fire: Fossil charcoal in Late Devonian Marine shales as an indicator of expanding terrestrial ecosystems, fire and atmospheric change. Am. J. Sci. 2015, 315, 713–733. [Google Scholar] [CrossRef]
- Lenton, T.M.; Daine, S.J.; Mills, B.J.W. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 2018, 178, 1–28. [Google Scholar] [CrossRef]
- Lenton, T.M. Fire feedbacks on atmospheric oxygen. In Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science; Belcher, C.M., Ed.; Wiley-Blackwell: Chichester, UK, 2013; pp. 289–308. [Google Scholar]
- Glasspool, I.J.; Scott, A.C. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 2010, 3, 627–630. [Google Scholar] [CrossRef]
- Collinson, M.E.; Scott, A.C. Implications of vegetational change through the geological record on models for coal-forming environments. In Coal and Coal-Bearing Strata: Recent Advances; Scott, A.C., Ed.; Geological Society of London Special Publication: London, UK, 1987; Volume 32, pp. 67–85. [Google Scholar]
- Glasspool, I.J.; Scott, A.C.; Waltham, D.; Pronina, N.V.; Shao, L. The impact of fire on the Late Paleozoic Earth system. Front. Plant Sci. 2015, 6, 756. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.E.; Kearsey, T.I.; Davies, S.J.; Millward, D.; Clack, J.A.; Smithson, T.R.; Marshall, J.E.A. Early Mississippian sandy siltstones preserve rare vertebrate fossils in seasonal flooding episodes. Sedimentology 2016, 63, 1677–1700. [Google Scholar] [CrossRef]
- Marshall, J.A.E.; Reeves, E.; Bennett, C.E.; Davies, S.J.; Kearsey, T.I.; Millward, D.; Smithson, T.R.; Browne, M.A.E. Reinterpreting the age of the uppermost ‘Old Red Sandstone’ and Early Carboniferous in Scotland Earth and Environmental Science. Trans. R. Soc. Edinb. 2019, 109, 265–278. [Google Scholar]
- Falcon-Lang, H.J. The Early Carboniferous (Asbian–Brigantian) seasonal tropical climate of northern Britain. Palaios 1999, 14, 116–126. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J. The Early Carboniferous (Courceyan–Arundian) monsoonal climate of the British Isles: Evidence from growth rings in fossil woods. Geol. Mag. 1999, 136, 177–187. [Google Scholar] [CrossRef]
- Fielding, C.R. Late Palaeozoic cyclothems—A review of their stratigraphy and sedimentology. Earth-Sci. Rev. 2021, 217, 103612. [Google Scholar] [CrossRef]
- Fielding, C.R.; Frank, T.D. Onset of the glacioeustatic signal recording late Palaeozoic Gondwanan ice growth: New data from palaeotropical East Fife, Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 121–138. [Google Scholar] [CrossRef]
- Falcon-Lang, H.J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands. Geology 2009, 37, 923–926. [Google Scholar] [CrossRef]
- Scott, A.C.; Stephens, R.S. British Pennsylvanian (Carboniferous) coal-bearing sequences—Where is the time. In Strata and Time: Probing the Gaps in Our Understanding; Smith, D.G., Bailey, R.J., Burgess, P.M., Fraser, A.J., Eds.; Geological Society, Special Publications: London, UK, 2015; Volume 404, pp. 283–302. [Google Scholar] [CrossRef]
- DiMichele, W.A.; Falcon-Lang, H.J. What happened to coal forests during Pennsylvanian glacial phases? Palaios 2010, 25, 611–617. [Google Scholar]
- Plotnick, R.E.; Kenig, F.; Scott, A.C. Filling the Voids: Caves, Time, and Stratigraphy. In Strata and Time: Probing the Gaps in Our Understanding; Smith, D.G., Bailey, R.J., Burgess, P.M., Fraser, A.J., Eds.; Geological Society, Special Publications: London, UK, 2015; Volume 404, pp. 233–250. [Google Scholar] [CrossRef]
- McElwain, J.C.; Matthaeu, W.J.; Barbosa, C.; Chondrogiannis, C.; O’ Dea, K.; Jackson, B.; Knetge, A.B.; Kwasniewska, K.; Nair, R.; White, J.D.; et al. Functional traits of fossil plants. New Phytol. 2024, 242, 392–423. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 10, 289–297. [Google Scholar] [CrossRef]
- Pausas, J.G.; Schwilk, D. Fire and plant evolution. New Phytol. 2012, 193, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.J.; Macphail, M.K.; Jordan, G.J.; Hill, R.S. Fossil evidence for open Proteaceae-dominated heathlands and fire in the Late Cretaceous of Australia. Am. J. Bot. 2015, 102, 2092–2107. [Google Scholar] [CrossRef] [PubMed]
- Crisp, M.D.; Burrows, G.E.; Cook, L.G.; Thornhill, A.H.; Bowman, D.M.S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat. Commun. 2011, 2, 193. [Google Scholar] [CrossRef] [PubMed]
- Falcon-Lang, H.J.; Mages, V.; Colinson, M.E. The oldest Pinus and its preservation by fire. Geology 2016, 44, 303–306. [Google Scholar] [CrossRef]
- He, T.; Belcher, C.M.; Lamont, B.B.; Lim, S.L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 2016, 104, 352–363. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B. Baptism by fire: The pivotal role of ancient conflagrations in evolution of the Earth’s flora. Natl. Sci. Rev. 2018, 5, 237–254. [Google Scholar] [CrossRef]
- He, T.; Pausas, J.G.; Belcher CMSchwilk, D.W.; Lamont, B.B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 2012, 194, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Lamont, B.B.; He, T. Fire-adapted Gondwanan Angiosperm floras arose in the Cretaceous. BMC Evol. Biol. 2012, 12, 223. [Google Scholar] [CrossRef] [PubMed]
- Looy, C.V. Natural history of a plant trait: Branch system abscission in Paleozoic conifers and its environmental, autecological and ecosystem implications in a fire-prone world. Paleobiology 2013, 39, 235–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, A.C. Thirty Years of Progress in Our Understanding of the Nature and Influence of Fire in Carboniferous Ecosystems. Fire 2024, 7, 248. https://doi.org/10.3390/fire7070248
Scott AC. Thirty Years of Progress in Our Understanding of the Nature and Influence of Fire in Carboniferous Ecosystems. Fire. 2024; 7(7):248. https://doi.org/10.3390/fire7070248
Chicago/Turabian StyleScott, Andrew C. 2024. "Thirty Years of Progress in Our Understanding of the Nature and Influence of Fire in Carboniferous Ecosystems" Fire 7, no. 7: 248. https://doi.org/10.3390/fire7070248
APA StyleScott, A. C. (2024). Thirty Years of Progress in Our Understanding of the Nature and Influence of Fire in Carboniferous Ecosystems. Fire, 7(7), 248. https://doi.org/10.3390/fire7070248