Owl Habitat Use and Diets After Fire and Salvage Logging
Abstract
1. Background
2. Methods and Materials
2.1. Owl Surveys
2.2. Owl Habitat Use
2.3. Pellet Collection and Diet Analysis
2.4. Statistical Analysis
3. Results
Owl Diets
4. Discussion
4.1. Landscape Suitability for Owls
4.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agee, J.K. Disturbance ecology of North American boreal forests and associated northern mixed/subalpine forest. In Ecology and Conservation of Lynx in the United States; Ruggiero, L.F., Aubry, K.B., Buskirk, S.W., Koehler, G.M., Krebs, C.J., McKelvey, K.S., Squires, J.R., Eds.; University of Colorado Press: Boulder, CO, USA, 2000; pp. 39–82. [Google Scholar]
- Coogan, S.C.P.; Daniels, L.D.; Boychuk, D.; Burton, P.J.; Flannigan, M.D.; Gauthier, S.; Kafka, V.; Park, J.S.; Wotton, B.M. Fifty years of wildland fire science in Canada. Can. J. For. Res. 2021, 51, 283–302. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western U.S forest wildfires. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Safford, H.D.; Crimmins, M.; Thode, A.E. Quantitative evidence for increasing fire forest fire severity in the Sierra Nevada and Southern Cascade Mountain, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- Seidl, R.S.; Schelhaas, M.; Manfred, J.L. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Prichard, S.J.; Stevens-Rumann, C.S.; Hessburg, P.F. Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 2017, 396, 217–233. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire regime changes in Canada over the last half century. Can. J. For. Res. 2019, 49, 256–259. [Google Scholar] [CrossRef]
- Christianson, A. Social science research on Indigenous wildfire management in the 21st century and future research needs. Int. J. Wildland Fire 2015, 24, 190–200. [Google Scholar] [CrossRef]
- Liebmann, M.J.; Farella, J.; Roos, C.I.; Stack, A.; Martini, S.; Swetnam, T.W. Native American depopulation, reforestation, and fire regimes in the Southwest United States, 1492–1900 CE. Proc. Natl. Acad. Sci. USA 2016, 113, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, C.; Anderson, C.L.; Collingwood, A.; Sissions, R.; Dunn, C.J.; Meigs, G.W.; Hibbs, D.E.; Murphy, S.; Kuiper, S.D.; SpearChief-Morris, J.; et al. Out of the ashes: Ecological resilience to extreme wildfire, prescribed burns, and Indigenous burning in ecosystems. Front. Ecol. Evol. 2019, 7, 436. [Google Scholar] [CrossRef]
- Lake, F.K.; Christianson, A.C. Indigenous Fire Stewardship. In Encyclopedia of Wildfire and Wildland-Urban Interface (WUI) Fires; Mazello, S., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 649–722. [Google Scholar]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilu, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, 929. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Lindenmayer, D.B. Temporal fragmentation of a critically endangered forest ecosystem. Austral Ecol. 2020, 45, 340–354. [Google Scholar] [CrossRef]
- Hutchen, J.; Volkmann, L.A.; Hodges, K.E. Experimental designs for studying small-mammal responses to fire in North American conifer forests. Int. J. Wildland Fire 2017, 26, 523–531. [Google Scholar] [CrossRef]
- Volkmann, L.; Hutchen, J.; Hodges, K.E. Trends in carnivore and ungulate fire ecology research in North American conifer forests. For. Ecol. Manag. 2020, 458, 117691. [Google Scholar] [CrossRef]
- Eng, M. Forest Stewardship in the Context of Large-Scale Salvage Operations: An Interpretation Paper; Technical Report 019; B.C. Ministry of Forests: Victoria, BC, Canada, 2004. [Google Scholar]
- Saint-Germain, M.; Greene, D.F. Salvage logging in the boreal and cordilleran forests of Canada: Integrating industrial and ecological concerns in management plans. For. Chron. 2009, 85, 120–134. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Lindenmayer, D.B.; Thorn, S.; Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Bioegeogr. 2018, 27, 1140–1154. [Google Scholar] [CrossRef]
- Thorn, S.; Bässler, C.; Brandl, R.; Burton, P.J.; Cahall, R.; Campbell, J.L.; Castro, J.; Chio, C.-Y.; Cobb, T.; Donato, D.C.; et al. Impacts of salvage logging on biodiversity: A meta-analysis. J. Appl. Ecol. 2018, 55, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Bowd, E.J.; Banks, S.C.; Bissett, A.; May, T.W.; Lindenmayer, D.B. Direct and indirect disturbance impacts in forests. Ecol. Lett. 2021, 24, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Povak, N.A.; Churchill, D.J.; Cansler, C.A.; Hessburg, P.F.; Kane, V.R.; Kane, J.T.; Lutz, J.A.; Larson, A.J. Wildfire severity and postfire salvage harvest effects on long-term forest regeneration. Ecosphere 2020, 11, e03199. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Noss, R.F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 2006, 20, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Gayton, D.; Almuedo, L. Post-disturbance management of biodiversity in BC forests. BC J. Ecosyst. Manag. 2012, 13, 1–9. [Google Scholar] [CrossRef]
- Meigs, G.W.; Krawchuk, M.A. Composition and structure of forest fire refugia: What are the ecosystem legacies across burned landscapes? Forests 2018, 9, 243. [Google Scholar] [CrossRef]
- Nappi, A.; Drapeau, P.; Savard, J.P.L. Salvage logging after wildfire in the boreal forest: Is it becoming a hot issue for wildlife? For. Chron. 2004, 80, 67–74. [Google Scholar] [CrossRef]
- Geary, W.L.; Doherty, T.S.; Nimmo, D.G.; Tulloch, A.I.T.; Ritchir, E.G. Predator responses to fire: A global systematic review and meta-analysis. J. Anim. Ecol. 2019, 89, 955–971. [Google Scholar] [CrossRef] [PubMed]
- Jager, H.I.; Long, J.W.; Malison, R.L.; Murphy, B.P.; Rust, A.; Silva, L.G.M.; Sollmann, R.; Steel, Z.L.; Bowen, M.D.; Dunham, J.B.; et al. Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecol. Evol. 2021, 11, 12259–12284. [Google Scholar] [CrossRef] [PubMed]
- Farnell, I.; Elkin, C.; Lilles, E.; Roberts, A.M.; Venter, M. The effects of variable retention forestry on coarse woody debris dynamics and concomitant impacts on American marten habitat after 27 years. Can. J. For. Res. 2020, 50, 925–935. [Google Scholar] [CrossRef]
- Caswell, D. Species Habitat Model for Barred Owl. Available online: www.for.gov.bc.ca/hfd/library/fia/2008/LBIP_4765001a.pdf (accessed on 3 June 2025).
- Caswell, D. Species Habitat Model for Great Horned Owl. Available online: www.for.gov.bc.ca/hfd/library/fia/2008/LBIP_4765001b.pdf (accessed on 3 June 2025).
- Grassy Mountain Coal Project. Appendix C: Wildlife Habitat Suitability Models; Benga Mining Limited: Calgary, AB, Canada, 2016. Available online: www.ceaa-acee.gc.ca/050/documents/p80101/115629E.pdf (accessed on 3 June 2025).
- Caswell, D. Species Habitat Model for Northern Saw-Whet Owl. Available online: www.for.gov.bc.ca/hfd/library/fia/2008/LBIP_4765001c.pdf (accessed on 3 June 2025).
- Hannah, K.C.; Hoyt, J.S. Northern Hawk Owls and recent burns: Does burn age matter? Condor 2004, 106, 420–423. [Google Scholar] [CrossRef]
- Hinam, H.L.; Clair, C.C.S. High levels of habitat loss and fragmentation limit reproductive success by reducing home range size and provisioning rates of Northern saw-whet owls. Biol. Conserv. 2008, 141, 524–535. [Google Scholar] [CrossRef]
- Hannah, K.C. Call playbacks increase detection rates of northern hawk owls in recent burns. J. Raptor Res. 2009, 43, 241–244. [Google Scholar] [CrossRef]
- Duchac, L.S.; Lesmeister, D.B.; Dugger, K.M.; Davis, R.J. Differential landscape use by forest owls two years after a mixed-severity wildfire. Ecosphere 2021, 12, 203770. [Google Scholar] [CrossRef]
- Bond, M.L.; Lee, D.E.; Siegel, R.B.; Ward, J.P. Habitat use and selection by California Spotted Owls in a postfire landscape. J. Wildl. Manag. 2009, 73, 1116–1124. [Google Scholar] [CrossRef]
- Bond, M.L.; Bradley, C.; Lee, D.E. Foraging habitat selection by California Spotted Owls after fire. J. Wildl. Manag. 2016, 80, 1290–1300. [Google Scholar] [CrossRef]
- Ganey, J.L.; Kyle, S.C.; Rawlinson, T.A.; Apprill, D.L.; Ward, J.P. Relative abundance of small mammals in nest core areas and burned wintering areas of Mexican Spotted Owls in the Sacramento Mountains, New Mexico. Wilson J. Ornithol. 2014, 126, 47–52. [Google Scholar] [CrossRef]
- Sahores, M.; Trejo, A. Diet shift of Barn Owls (Tyto alba) after natural fires in Patagonia, Argentina. J. Raptor Res. 2004, 38, 174–177. [Google Scholar]
- Rockweit, J.T.; Franklin, A.B.; Carlson, P.C. Differential impacts of wildfire on the population dynamics of an old-forest species. Ecology 2017, 98, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Village, A. The diet and breeding of Long-eared Owls in relation to vole numbers. Bird Study 1981, 28, 214–224. [Google Scholar] [CrossRef]
- Domahidi, Z.; Shonfield, J.; Nielsen, S.E.; Spence, J.R.; Bayne, E.M. Spatial distribution of the Boreal Owl and Northern Saw-Whet Owl in the Boreal region of Alberta, Canada. Avian Conserv. Ecol. 2019, 14, 14. [Google Scholar] [CrossRef]
- Clark, R.J. A field study of the short-eared owl, Asio flammeus (Pontoppidan), in North America. Wildl. Monogr. 1975, 47, 3–67. [Google Scholar]
- Marti, C.D. A review of prey selection by the long-eared owl. Condor 1976, 78, 331–336. [Google Scholar] [CrossRef]
- Block, W.M.; Ganey, J.L.; Scott, P.E.; King, R. Prey ecology of Mexican spotted owls in pine-oak forests of northern Arizona. J. Wildl. Manag. 2005, 69, 618–629. [Google Scholar] [CrossRef]
- Cheveau, M.; Drapeau, P.; Imbeau, L. Owl winter irruptions as an indicator of small mammal population cycles in the boreal forest of eastern North America. Oikos 2004, 107, 190–198. [Google Scholar] [CrossRef]
- Selcuk, A.Y.; Bankoglu, K.; Kefelioglu, H. Comparison of winter diet of long-eared owls Asio otus (L., 1758) and short-eared owls Asio flammeus (Pontoppidan, 1763) (Ayes: Strigidae) in Northern Turkey. Acta Zool. Bulg. 2017, 69, 345–348. [Google Scholar]
- Deshler, J.F.; Murphy, M.T. The breeding biology of the northern pygmy-owl: Do the smallest of the small have an advantage? Condor 2012, 114, 314–322. [Google Scholar] [CrossRef]
- Kelly, A.J.; Hodges, K.E. Post-fire salvage logging reduces snowshoe hare and red squirrel density in early seral stages. For. Ecol. Manag. 2020, 473, 118272. [Google Scholar] [CrossRef]
- Kelly, A.J.; Hodges, K.E. Post-fire salvage logging alters impacts of recent wildfire on small mammal communities and abundances in summer. J. Mammal. 2022, 103, 1168–1181. [Google Scholar] [CrossRef]
- Hausleitner, D. Inventory Methods for Owl Surveys: Standards for Components of British Columbia’s Biodiversity No. 42. Prepared for: Ministry of Environment, Ecosystems Branch; Selkirk College: Castelgar, BC, Canada, 2006; iv + 52p. [Google Scholar]
- Andersen, D.E. Survey Techniques. In Raptor Research and Management Techniques; Bird, D.M., Bildstein, K.L., Eds.; Hancock House Publishers Ltd.: Surrey, BC, Canada, 2007; pp. 89–100. [Google Scholar]
- Grossman, S.R.; Hannon, S.J.; Sánchez-Azofeifa, A. Responses of Great Horned Owls (Bubo virginianus), Barred Owls (Strix varia), and Northern Saw-whet Owls (Aegolius acadicus) to forest cover and configuration in an agricultural landscape in Alberta, Canada. Can. J. Zool. 2008, 86, 1165–1172. [Google Scholar] [CrossRef]
- Livezey, K.B. Barred Owl habitat and prey: A review and synthesis of the literature. J. Raptor Res. 2007, 41, 177–201. [Google Scholar] [CrossRef]
- Waterhouse, F.L.; Doyle, F.I.; Turney, L.; Wijdeven, B.; Todd, M.; Bergman, C.; Vennesland, R.G. Spring and winter home ranges of the Haida Gwaii Northern Saw-Whet Owl (Aegolius acadicus brooksi). J. Raptor Res. 2017, 51, 153–164. [Google Scholar] [CrossRef]
- Marti, C.D.; Bechard, M.; Jaksic, F.M. Food habits. In Raptor Research and Management Techniques; Bird, D.M., Bildstein, K.L., Eds.; Hancock House Publishers Ltd.: Surrey, BC, Canada, 2007; pp. 129–152. [Google Scholar]
- Ormrod, A.; Doyle, F.I.; Lawson, K.J.; Hodges, K.E. Niche partitioning of avian predators in northern grasslands amended by biosolids. Ecol. Evol. 2021, 11, 6248–6259. [Google Scholar] [CrossRef] [PubMed]
- Meineke, J.; Doyle, F.I.; Hodges, K.E. Raptors benefit from biosolids applications on rangelands. Avian Conserv. Ecol. 2023, 18, 25. [Google Scholar] [CrossRef]
- Francksen, R.M.; Whittingham, M.J.; Baines, D. Assessing prey provisioned to Common Buzzard Buteo buteo chicks: A comparison of methods. Bird Study 2016, 63, 303–310. [Google Scholar] [CrossRef]
- Bocheński, Z.M. Owls, diurnal raptors, and humans: Signatures on avian bones. In Biosphere to Lithosphere; O’Connor, T., Ed.; Oxbow Books: Oxford, UK, 2005; pp. 31–45. [Google Scholar]
- Sharikov, A.; Kovinka, T.; Bragin, M. A comparative laboratory study of the preservation of different rodent bones in pellets of Strigiformes. Ornis Fenn. 2018, 95, 82–88. [Google Scholar] [CrossRef]
- Tornberg, R.; Reif, V. Assessing the diet of birds of prey: A comparison of prey items found in nests and images. Ornis Fenn. 2007, 84, 21–31. [Google Scholar]
- Korpimäki, E.; Norrdahl, K. Numerical and functional responses of Kestrels, Short-eared Owls, and Long-eared Owls to vole densities. Ecology 1991, 72, 814–826. [Google Scholar] [CrossRef]
- Nagorsen, D.W. Rodents and Lagomorphs of British Columbia; Royal British Columbia Museum: Victoria, BC, Canada, 2005. [Google Scholar]
- Heisler, L.M.; Somers, C.M.; Poulin, R.G. Owl pellets: A more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods Ecol. Evol. 2016, 7, 96–103. [Google Scholar] [CrossRef]
- Foresman, K.R. Key to the Mammals of Montana; University of Montana: Missoula, MT, USA, 2001. [Google Scholar]
- Shonfield, J.; Bayne, E.M. Weak support for cumulative effects of industrial disturbance on three owl species in Alberta’s boreal forest. Avian Conserv. Ecol. 2023, 18, 9. [Google Scholar] [CrossRef]
- McGinn, K.; Zuckerberg, B.; Jones, G.M.; Wood, C.M.; Kahl, S.; Kelly, K.G.; Whitmore, S.A.; Kramer, H.A.; Barry, J.M.; Ng, E.; et al. Frequent, heterogenous fire supports a forest owl assemblage. Ecol. Appl. 2025, 35, e3080. [Google Scholar] [CrossRef] [PubMed]
- Rohner, C.; Doyle, F.I.; Smith, J.N.M. Great Horned Owls. In Ecosystem Dynamics of the Boreal Forest: The Kluane Project; Krebs, C.J., Boutin, S., Boonstra, R., Eds.; Oxford University Press: NewYork, NY, USA, 2001. [Google Scholar]
- Poulin, R.G.; Wellicome, T.I.; Todd, L.D. Synchronous and delayed numerical responses of a predatory bird community to a vole outbreak on the Canadian prairies. J. Raptor Res. 2001, 35, 288–295. [Google Scholar]
- Houston, C.S. Long-eared Owls, Asio otus: A review of North American banding. Can. Field Nat. 2005, 119, 395–402. [Google Scholar] [CrossRef]
- Wiggins, D.A.; Holt, D.W.; Leasure, S.M. Short-eared Owl (Asio flammeus), version 1.0. In Birds of the World; Billerman, S.M., Ed.; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
- Booms, T.L.; Holroyd, G.L.; Gahbauer, M.A.; Trefry, H.E.; Wiggins, D.A.; Holt, D.W.; Johnson, J.A.; Lewis, S.B.; Larson, M.D.; Keyes, K.L.; et al. Assessing the status and conservation priorities of the Short-eared Owl in North America. J. Wildl. Manag. 2014, 78, 772–778. [Google Scholar] [CrossRef]
- Miller, R.A.; Buchanan, J.B.; Pope, T.L.; Carlisle, J.D.; Moulton, C.E.; Booms, T.L. Short-eared Owl land-use associations during the breeding season in the western United States. J. Raptor Res. 2022, 56, 273–286. [Google Scholar] [CrossRef]
- Siegel, R.B.; Eyes, S.A.; Tingley, M.W.; Wu, J.X.; Stock, S.L.; Medley, J.R.; Kalinowski, R.S.; Casas, A.; Lima-Baumbach, M.; Rich, A.C. Short-term resilience of Great Gray Owls to a megafire in California, USA. Condor 2019, 121, duy019. [Google Scholar] [CrossRef]
- Kropacheva, Y.E.; Smirnov, N.G.; Zykov, S.V.; Cheprakov, M.I.; Sadykova, N.O.; Bachurin, G.N. The diet of the Great Gray Owl, Strix nebulosa, at different levels of prey abundance during the nesting season. Russ. J. Ecol. 2019, 50, 43–49. [Google Scholar] [CrossRef]
- Woodruff, J.M.; Prince, B.A.; Bogiatto, R.J.; Hatfield, C.A. Notes on the fall-winter diet of Northern Saw-whet Owls in northern California. West. N. Am. Nat. 2020, 80, 74–75. [Google Scholar] [CrossRef]
- Groce, J.E.; Morrison, M.L. Habitat use by Saw-Whet Owls in the Sierra Nevada. J. Wildl. Manag. 2010, 74, 1523–1532. [Google Scholar] [CrossRef]
- Scholer, M.N.; Leu, M.; Belthoff, J.R. Factors associated with Flammulated Owl and Northern Saw-whet Owl occupancy in southern Idaho. J. Raptor Res. 2014, 48, 128–141. [Google Scholar] [CrossRef]
- Rosenberg, K.V.; Dokter, A.M.; Blancher, P.J.; Sauer, J.R.; Smith, A.C.; Smith, P.A.; Stanton, J.C.; Panjabi, A.; Helft, L.; Parr, M.; et al. Decline of the North American avifauna. Science 2019, 366, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Noss, R.F.; Thorn, S.; Bassler, C.; Leverkus, A.B.; Lindenmayer, D. Increasing disturbance demands new policies to conserve intact forest. Conserv. Lett. 2018, 12, e12449. [Google Scholar] [CrossRef]
In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | |
---|---|---|---|---|---|
meadow vole | 23 | 31 | 33.8 | 21.8 | 27.2 |
montane vole | 1 | 1 | 1.5 | 0.7 | 0.8 |
long-tailed vole | 2 | 2 | 2.9 | 1.4 | 2.2 |
heather vole | 1 | 1 | 1.5 | 0.7 | 0.8 |
bog lemming | 1 | 1 | 1.5 | 0.7 | 0.7 |
red-backed vole | 19 | 26 | 27.9 | 18.3 | 15.0 |
deermouse | 30 | 46 | 44.1 | 32.4 | 25.1 |
common shrew | 2 | 3 | 2.9 | 2.1 | 0.3 |
pine chipmunk | 2 | 2 | 2.9 | 1.4 | 2.8 |
unknown Microtus | 19 | 21 | 27.9 | 14.8 | 19.4 |
small mammal | 5 | 5 | 7.4 | 3.5 | 3.8 |
small bird | 3 | 3 | 4.4 | 2.1 | 1.8 |
Long-Eared Owls | Barred Owls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | |
meadow vole | 6 | 6 | 26.1 | 21.4 | 23.7 | 2 | 2 | 16.7 | 12.5 | 10.3 |
montane vole | 0 | 0 | — | — | — | 1 | 1 | 8.3 | 6.3 | 4.7 |
red-backed vole | 3 | 3 | 13.0 | 10.7 | 7.8 | 0 | 0 | — | — | — |
deermouse | 5 | 5 | 21.7 | 17.9 | 12.3 | 2 | 3 | 16.7 | 18.8 | 9.6 |
common shrew | 1 | 1 | 4.3 | 3.6 | 0.5 | 0 | 0 | — | — | — |
pine chipmunk | 2 | 4 | 8.7 | 14.3 | 24.8 | 0 | 0 | — | — | — |
red squirrel | 0 | 0 | — | — | — | 1 | 1 | 8.3 | 6.3 | 33.1 |
unknown Microtus | 0 | 0 | — | — | — | 4 | 4 | 33.3 | 25.0 | 21.9 |
small mammal | 8 | 9 | 34.8 | 32.1 | 31.0 | 3 | 3 | 25.0 | 18.8 | 13.5 |
small bird | 0 | 0 | — | — | — | 2 | 2 | 16.7 | 12.5 | 7.1 |
In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | |
---|---|---|---|---|---|
meadow vole | 3 | 7 | 33.3 | 41.2 | 3.4 |
red-backed vole | 2 | 3 | 22.2 | 17.6 | 0.9 |
red squirrel | 1 | 1 | 11.1 | 5.9 | 3.1 |
unknown Microtus | 1 | 1 | 11.1 | 5.9 | 0.5 |
snowshoe hare | 5 | 5 | 55.6 | 29.4 | 92.1 |
2018 | 2019 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | In n Pellets | n Prey | AFO | RFO | Biomass (% of Diet) | |
meadow vole | 4 | 4 | 18.2 | 17.4 | 20.5 | 5 | 5 | 23.8 | 20.8 | 26.5 |
long-tailed vole | 0 | 0 | — | — | — | 1 | 1 | 4.8 | 4.2 | 6.6 |
red-backed vole | 4 | 4 | 18.2 | 17.4 | 13.5 | 2 | 2 | 9.5 | 8.3 | 6.9 |
deermouse | 3 | 3 | 13.6 | 13.0 | 9.6 | 7 | 9 | 33.3 | 37.5 | 29.6 |
common shrew | 0 | 0 | — | — | — | 1 | 1 | 4.8 | 4.2 | 0.7 |
pine chipmunk | 2 | 2 | 9.1 | 8.7 | 16.2 | 0 | 0 | — | — | — |
unknown Microtus | 0 | 0 | — | — | — | 2 | 2 | 9.5 | 8.3 | 11.1 |
small mammal | 9 | 9 | 40.9 | 39.1 | 40.3 | 4 | 4 | 19.0 | 16.7 | 18.5 |
grasshopper | 1 | 1 | 4.5 | 4.3 | 0.03 | 0 | 0 | — | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.J.; Doyle, F.I.; Hodges, K.E. Owl Habitat Use and Diets After Fire and Salvage Logging. Fire 2025, 8, 281. https://doi.org/10.3390/fire8070281
Kelly AJ, Doyle FI, Hodges KE. Owl Habitat Use and Diets After Fire and Salvage Logging. Fire. 2025; 8(7):281. https://doi.org/10.3390/fire8070281
Chicago/Turabian StyleKelly, Angelina J., Frank I. Doyle, and Karen E. Hodges. 2025. "Owl Habitat Use and Diets After Fire and Salvage Logging" Fire 8, no. 7: 281. https://doi.org/10.3390/fire8070281
APA StyleKelly, A. J., Doyle, F. I., & Hodges, K. E. (2025). Owl Habitat Use and Diets After Fire and Salvage Logging. Fire, 8(7), 281. https://doi.org/10.3390/fire8070281