Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells
Abstract
:1. Introduction
2. Autism Spectrum Disorder
2.1. Epidemiology and Prevalence
2.2. Etiology
2.2.1. Genetic Predisposition
2.2.2. Prenatal Exposure to Teratogens
- Lower pain sensitivity but higher sensitivity to non-painful stimuli;
- Diminished acoustic prepulse inhibition;
- Locomotor and repetitive/stereotypic-like hyperactivity, coupled with reduced exploratory behavior;
- Decreased frequency of social behaviors and increased latency to initiate social interactions.
2.2.3. Epigenetic Mechanisms
2.3. Behavioral Features of ASD
2.4. Neurobiology of ASD
2.4.1. Neural Alterations
2.4.2. Glial Alterations
2.5. Treatments for ASD
3. Environmental Enrichment
3.1. Neurobiological Effects of EE
3.1.1. Synaptic Efficacy
3.1.2. Cortical Thickness
3.1.3. Glial Plasticity
3.2. Effects of EE on Autistic-like Behaviors in Animal Models
3.3. Effects of EE on Autistic Humans
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABA | Applied Behavior Analysis |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ASD | Autistic Spectrum Disorder |
ATP | Adenine Triphosphate |
BDNF | Brain-derived neurotrophic factor |
Ca2+ | Calcium cation |
CA1 | Cornu Ammonis 1 |
CBT | Cognitive–behavioral therapy |
CNS | Central nervous system |
DG | Dentate gyrus |
DNA | Deoxyribonucleic acid |
DSM-III-R | Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition, Revised |
DSM-IV | Diagnostic and Statistical Manual of Mental Disorders, 4th Edition |
DSM-V | Diagnostic and Statistical Manual of Mental Disorders, 5th Edition |
EAAT1 | Excitatory amino acid transporter 1 |
EAAT2 | Excitatory amino acid transporter 2 |
EE | Environmental enrichment |
fMRI | Functional magnetic resonance imaging |
GABA | Gamma Aminobutyric Acid |
GDNF | Glial-derived Factor |
GFAP | Glial Fibrillary Acidic Protein |
iPSCs | Induced Pluripotent Stem Cells |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
IL-18 | Interleukin-18 |
MBP | Myelin basic protein |
MEA | Multi-electrode array |
MRI | Magnetic resonance imaging |
NLs | Neuroligins |
Olig2 | Oligodendrocyte transcription factor 2 |
PLC-IP3 | Phospholipase C–Inositol 1,4,5–Triphosphate |
RNA | Ribonucleic acid |
TEACCH | Treatment and Education of Autistic and related Communication Handicapped Children |
VPA | Valproic acid |
References
- American Psychiatric Association [APA]. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 0890425574. [Google Scholar]
- Vázquez-Villagrán, L.L.; Moo-Rivas, C.D.; Meléndez-Bautista, E.; Magriña-Lizama, J.S.; Méndez-Domínguez, N.I. Autism spectrum disorder review: Diagnosis and treatment update. Rev. Mex. Neurocienc. 2017, 18, 31–45. [Google Scholar]
- Balbuena, F. Etiology of autism: The idiopathic-syndromic continuum as an explanatory attempt. Rev. Chil. Neuro-Psiquiatría 2015, 53, 269–276. (In Spanish) [Google Scholar]
- Yoon, S.H.; Choi, J.; Lee, W.J.; Do, J.T. Genetic and Epigenetic etiology underlying Autism Spectrum Disorder. J. Clin. Med. 2020, 9, 966. [Google Scholar] [CrossRef] [PubMed]
- Hervás, A.; Rueda, I. Conduct disorders in autism spectrum disorders. Rev. Neurol. 2018, 66, 31–38. (In Spanish) [Google Scholar] [CrossRef]
- Dorantes-Barrios, C.J.; Reyes-Meza, V.; Camacho-Candia, J.A.; Pfaus, J.G.; González-Flores, O. Influence of environmental enrichment on sexual behavior and the process of learning and memory in a rat model of autism with valproic acid. Brain Res. 2024, 1827, 148738. [Google Scholar] [CrossRef]
- Schneider, T.; Turczak, J.; Przewłocki, R. Environmental Enrichment Reverses Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Issues for a Therapeutic Approach in Autism. Neuropsychopharmacology 2006, 31, 36–46. [Google Scholar] [CrossRef]
- Woo, C.C.; Leon, M. Environmental enrichment as an effective treatment for autism: A randomized controlled trial. Behav. Neurosci. 2013, 127, 487–497. [Google Scholar] [CrossRef]
- Woo, C.C.; Donnelly, J.H.; Steinberg-Epstein, R.; Leon, M. Environmental enrichment as a therapy for autism: A clinical trial replication and extension. Behav. Neurosci. 2015, 129, 412–422. [Google Scholar] [CrossRef]
- Aranoff, E.; Hillyer, R.; Leon, M. Environmental Enrichment Therapy for Autism: Outcomes with increased access. Neural Plast. 2016, 2016, 273415. [Google Scholar] [CrossRef]
- Schneider, T.; Przewłocki, R. Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology 2005, 30, 80–89. [Google Scholar] [CrossRef]
- Williamson, L.L.; Chao, A.; Bilbo, S.D. Environmental enrichment alters glial antigen expression and neuroimmune function in the adult rat hippocampus. Brain Behav. Immun. 2012, 26, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.F.; Chaskel, R. Autism spectrum disorder. Curso Contin. Actual. Pediatría Soc. Colomb. Pediatría 2016, 15, 19–29. (In Spanish) [Google Scholar]
- Brugha, T.; Cooper, S.A.; McManus, S.; Purdon, S.; Smith, J.; Scott, F.J.; Spiers, N.A.; Tyrer, F. Estimating the Prevalence of Autism Spectrum Conditions in Adults: Extending the 2007 Adult Psychiatric Morbidity Survey. Available online: https://www.choiceforum.org/docs/estp.pdf (accessed on 24 August 2024).
- Christensen, D.L.; Maenner, M.J.; Bilder, D.; Constantino, J.N.; Daniels, J.; Durkin, M.S.; Fitzgerald, R.T.; Kurzius-Spencer, M.; Pettygrove, S.D.; Robinson, C.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 4 Years—Early Autism and Developmental Disabilities Monitoring Network, Seven Sites, United States, 2010, 2012, and 2014. MMWR. Surveill. Summ. 2019, 68, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020, 180, 568.e23–584.e23. [Google Scholar] [CrossRef]
- Rajabi, P.; Noori, A.S.; Sargolzaei, J. Autism spectrum disorder and various mechanisms behind it. Pharmacol. Biochem. Behav. 2024, 245, 173887. [Google Scholar] [CrossRef]
- Hervás, A. One autism, several autisms. Phenotypical variability in autism spectrum disorders. Rev. Neurol. 2016, 62 (Suppl. S1), 9–14. [Google Scholar] [CrossRef]
- Feng, S.; Huang, H.; Wang, N.; Wei, Y.; Liu, Y.; Qin, D. Sleep Disorders in Children with Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front. Behav. Neurosci. 2021, 15, 673372. [Google Scholar] [CrossRef]
- Humphreys, J.S.; Gringras, P.; Blair, P.S.; Scott, N.; Henderson, J.; Fleming, P.J.; Emond, A.M. Sleep patterns in children with autistic spectrum disorders: A prospective cohort study. Arch. Dis. Child. 2014, 99, 114–118. [Google Scholar] [CrossRef]
- Verhoeff, M.E.; Blanken, L.M.E.; Kocevska, D.; Mileva-Seitz, V.R.; Jaddoe, V.W.V.; White, T.; Verhulst, F.; Luijk, M.P.C.M.; Tiemeier, H. The bidirectional association between sleep problems and autism spectrum disorder: A population-based cohort study. Mol. Autism 2018, 9, 8. [Google Scholar] [CrossRef]
- Chernikova, M.A.; Flores, G.D.; Kilroy, E.; Labus, J.S.; Mayer, E.A.; Aziz-Zadeh, L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021, 13, 4497. [Google Scholar] [CrossRef]
- González, D.; García, M.; Amieva, M.; Baez, L.; Antúnez, B. Current concepts on the etiology of autism. Acta Pediatr. Méx. 2011, 32, 213–222. (In Spanish) [Google Scholar]
- Calleja-Pérez, B.; Fernández-Perrone, A.L.; Fernández-Mayoralas, D.M.; Jiménez De Domingo, A.; Tirado, P.; López-Arribas, S.; Suárez-Guinea, R.; Fernandez Jaen, A. Genetic studies and neurodevelopment. From utility to the genetic model. Medicine 2020, 80 (Suppl. SII), 26–30. (In Spanish) [Google Scholar]
- Folstein, S.E.; Rosen-Sheidley, B. Genetics of austim: Complex aetiology for a heterogeneous disorder. Nat. Rev. Genet. 2001, 2, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Siu, M.T.; Weksberg, R. Epigenetics of Autism Spectrum Disorder. In Neuroepigenomics in Aging and Disease; Advances in Experimental Medicine and Biology; Delgado-Morales, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 978, pp. 63–90. [Google Scholar] [CrossRef]
- Folstein, S.; Rutter, M. Infantile autism: A genetic study of 21 twin pairs. J. Child Psychol. Psychiatry 1977, 18, 297–321. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Le Couteur, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol. Med. 1995, 25, 63–77. [Google Scholar] [CrossRef]
- Eyring, K.W.; Geschwind, D.H. Three decades of ASD genetics: Building a foundation for neurobiological understanding and treatment. Hum. Mol. Genet. 2021, 30, R236–R244. [Google Scholar] [CrossRef]
- Zou, T.; Liu, J.; Zhang, X.; Tang, H.; Song, Y.; Kong, X. Autoantibody and autism spectrum disorder: A systematic review. Res. Autism Spectr. Disord. 2020, 75, 101568. [Google Scholar] [CrossRef]
- Strömland, K.; Nordin, V.; Miller, M.; Akerström, B.; Gillberg, C. Autism in thalidomide embryopathy: A population study. Dev. Med. Child Neurol. 1994, 36, 351–356. [Google Scholar] [CrossRef]
- Williams, G.; King, J.; Cunningham, M.; Stephan, M.; Kerr, B.; Hersh, J.H. Fetal valproate syndrome and autism: Additional evidence of an association. Dev. Med. Child Neurol. 2001, 43, 202–206. [Google Scholar] [CrossRef]
- Nanson, J.L. Autism in Fetal Alcohol Syndrome: A Report of Six Cases. Alcohol. Clin. Exp. Res. 1992, 16, 558–565. [Google Scholar] [CrossRef]
- Palacios-Rosas, E. The thalidomide catastrophe and its importance in the safety of medicines. Av. Enfermería 2021, 39, 155–156. [Google Scholar] [CrossRef]
- Gao, S.; Wang, S.; Fan, R.; Hu, J. Recent advances in the molecular mechanism of thalidomide teratogenicity. Biomed. Pharmacother. 2020, 127, 110114. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Huang, K.; Yi, A.; Feng, Z.; Liu, H.; Liu, X.; Liang, L.; Huang, Q.; Xiao, Y. Absence of associations with prefrontal cortex and cerebellum may link to early language and social deficits in preschool children with ASD. Front. Psychiatry 2023, 14, 1144993. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Epilepsy, Antiepileptic Drugs, and Adverse Pregnancy Outcomes, 2: Major Congenital Malformations with Antiepileptic Drug Monotherapy. J. Clin. Psychiatry 2024, 85, 55879. [Google Scholar] [CrossRef] [PubMed]
- Melashenko, T.; Palchik, A. Fetal valproate syndrome (review and case report). Pediatrician 2023, 14, 117–125. [Google Scholar] [CrossRef]
- Luo, L.; Chen, J.; Wu, Q.; Yuan, B.; Hu, C.; Yang, T.; Wei, H.; Li, T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. Environ. Toxicol. Pharmacol. 2023, 99, 104090. [Google Scholar] [CrossRef]
- Carpita, B.; Migli, L.; Chiarantini, I.; Battaglini, S.; Montalbano, C.; Carmassi, C.; Cremone, I.M.; Dell’Osso, L. Autism Spectrum Disorder and Fetal Alcohol Spectrum Disorder: A Literature Review. Brain Sci. 2022, 12, 792. [Google Scholar] [CrossRef]
- Csoka, A.B.; El Kouhen, N.; Bennani, S.; Getachew, B.; Aschner, M.; Tizabi, Y. Roles of Epigenetics and Glial Cells in Drug-Induced Autism Spectrum Disorder. Biomolecules 2024, 14, 437. [Google Scholar] [CrossRef]
- Mishra, A.; Prabha, P.K.; Singla, R.; Kaur, G.; Sharma, A.R.; Joshi, R.; Suroy, B.; Medhi, B. Epigenetic Interface of Autism Spectrum Disorders (ASDs): Implications of Chromosome 15q11–q13 Segment. ACS Chem. Neurosci. 2022, 13, 1684–1696. [Google Scholar] [CrossRef]
- Arrebillaga, M. Autism and Language Disorder, 1st ed.; Editorial Brujas: Cordoba, Spain, 2009; ISBN 9789875911802. (In Spanish) [Google Scholar]
- Artigas, J. Language in autistic disorders. Rev. Neurol. 1999, 28 (Suppl. S2), S118–S123. (In Spanish) [Google Scholar]
- Barajas, L. Language and communication in autism. Rev. Psicol. 2022, 11, 74–98. (In Spanish) [Google Scholar]
- García, C.; Solovieva, Y.; Quintanar, L. Neuropsychological evaluation and intervention in a case of severe Autism Spectrum Disorder (ASD). Rev. Ibero. Psicol. 2020, 13, 99–111. (In Spanish) [Google Scholar] [CrossRef]
- Belinchón, M.; Riviére, A. Autistic language from a correlational perspective. Est. Psicol. 2000, 21, 17–37. (In Spanish) [Google Scholar] [CrossRef]
- Palomo, R.; Ozonoff, S.; Young, G.; Carmona, M. Social orienting and initiated joint attention behaviors in 9 to 12 month old children with autism spectrum disorder: A family home movies study. Autism Res. 2022, 15, 1109–1119. [Google Scholar] [CrossRef]
- Donohue, M.; Camacho, M.; Drake, J.; Schwarzlose, R.; Brady, R.; Hoyniak, C.P.; Hennefield, L.; Wakschlag, L.S.; Rogers, C.E.; Barch, D.M.; et al. Less attention to emotional faces is associated with low empathy and prosociality in 12-to 20-month old infants. Infancy 2024, 29, 113–136. [Google Scholar] [CrossRef]
- Journal, F.; Franchini, M.; Godel, M.; Kojovic, N.; Latrèche, K.; Solazzo, S.; Schneider, M.; Schaer, M. Phenotyping variability in early socio-communicative skills in young children with autism and its influence on later development. Autism Res. 2024, 17, 2030–2044. [Google Scholar] [CrossRef]
- Black, K.; Stevenson, A.; Segers, M.; Ncube, B.; Sun, S.; Philipp-Muller, A.; Bebko, J.M.; Barense, M.D.; Ferber, S. Linking anxiety and insistence on sameness in autistic children: The role of sensory hypersensitivity. J. Autism Dev. Disord. 2017, 47, 2459–2470. [Google Scholar] [CrossRef]
- Amaral, D.; Mills, C.; Wu, C. Neuroanatomy of the autism. Trends Neurosci. 2008, 31, 137–145. [Google Scholar] [CrossRef]
- Courchesne, E. Brain development in autism: Early overgrowth followed by premature arrest of growth. Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 106–111. [Google Scholar] [CrossRef]
- Courchesne, E.; Pierce, K.; Schumann, C.; Redcay, E.; Buckwalter, J.; Kennedy, D.P.; Morgan, J. Mapping early brain development in autism. Neuron 2007, 56, 399–413. [Google Scholar] [CrossRef]
- Courchesne, E.; Pierce, K. Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. Int. J. Dev. Neurosci. 2005, 23, 153–170. [Google Scholar] [CrossRef]
- Hazlett, H.; Poe, M.; Gerig, G.; Smith, R.; Provenzale, J.; Ross, A.; Gilmore, J.; Piven, J. Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years. Arch. Gen. Psychiatry 2005, 62, 1366–1376. [Google Scholar] [CrossRef] [PubMed]
- Supekar, K.; Kochalka, J.; Schaer, M.; Wakeman, H.; Qin, S.; Padmanabhan, A.; Menon, V. Deficits in mesolimbic reward pathway underlie social interaction impairments in children with autism. Brain 2018, 141, 2795–2805. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, M.; Mačužić, I.; Milosavljević, J.; Lukovic, T.; Aleksić, D.; Gavrilović, J.; Milosavljevic, M.; Jankovic, S.; Pejcic, A. Amygdala Volumes in Autism Spectrum Disorders: Meta-analysis of Magnetic Resonance Imaging Studies. Rev. J. Autism Dev. Dis. 2021, 10, 169–183. [Google Scholar] [CrossRef]
- Behrouzi, A.; Valles-Capetillo, E.; Kana, R. An ALE meta-analysis of the neural evidence of facial emotion processing in autism. World J. Biol. Psychiatry 2025, 26, 74–91. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Wang, H.; Wang, Z. Neural correlates of facial recognition deficits in autism spectrum disorder: A comprehensive review. Front. Psychiatry 2025, 15, 1464142. [Google Scholar] [CrossRef]
- Lee, J.; Andrews, D.; Ozonoff, S.; Solomon, M.; Rogers, S.; Amaral, D.G.; Nordahl, C.W. Longitudinal Evaluation of Cerebral Growth Across Childhood in Boys and Girls with Autism Spectrum Disorder. Biol. Psychiatry 2021, 90, 286–294. [Google Scholar] [CrossRef]
- Casanova, M.; Van Kooten, I.; Switala, A.; Van Engeland, H.; Heinsen, H.; Steinbusch, H.W.M.; Hof, P.R.; Trippe, J.; Stone, J.; Schmitz, C. Minicolumnar abnormalities in autism. Acta Neuropathol. 2006, 112, 287–303. [Google Scholar] [CrossRef]
- Just, M.; Cherkassky, V.; Keller, T.; Kana, R.; Minshew, N. Functional and anatomical cortical underconnectivity in autism: Evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb. Cortex 2007, 17, 951–961. [Google Scholar] [CrossRef]
- Koshino, H.; Carpenter, P.; Minshew, N.; Cherkassky, V.; Keller, T.; Just, M. Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 2005, 24, 810–821. [Google Scholar] [CrossRef]
- Minshew, N.; Williams, D. The New Neurobiology of Autism: Cortex, Connectivity, and Neuronal Organization. Arch. Neurol. 2007, 64, 945–950. [Google Scholar] [CrossRef]
- Moldin, S. Neurobiology of autism: The new frontier. Genes Brain Behav. 2003, 2, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, C.; Verkhrastsky, A. Chapter Eleven—The role of neuroglia in autism spectrum disorders. In Progress in Molecular Biology and Translational Science; Academic Press: Cambridge, MA, USA, 2020; Volume 173, pp. 301–330. ISBN 9780128212424. [Google Scholar] [CrossRef]
- Bronzuoli, M.R.; Facchinetti, R.; Ingrassia, D.; Sarvadio, M.; Schiavi, S.; Steardo, L.; Verkhratsky, A.; Trezza, V.; Scuderi, C. Neuroglia in the autistic brain: Evidence from a preclinical model. Mol. Autism 2018, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Sancho, L.; Contreras, M.; Allen, N. Glia as sculptors of synaptic plasticity. Neurosci. Res. 2020, 167, 17–29. [Google Scholar] [CrossRef]
- Traetta, M.E.; Uccelli, N.A.; Zárate, S.C.; Gómez Cuautle, D.; Ramos, A.J.; Reinés, A. Long-Lasting Changes in Glial Cells Isolated from Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder. Front. Pharmacol. 2021, 12, 707859. [Google Scholar] [CrossRef]
- Russo, F.B.; Freitas, B.C.; Pignatari, G.C.; Fernandes, I.R.; Sebat, J.; Muotri, A.R.; Beltrão-Braga, P.C.B. Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol. Psychiatry 2018, 83, 569–578. [Google Scholar] [CrossRef]
- Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci. 2020, 10, 951. [Google Scholar] [CrossRef]
- Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci. 2019, 12, 517. [Google Scholar] [CrossRef]
- Tan, P.; Shen, X.; Zeng, L.; Weng, X.; Geng, H. Pharmacotherapy for the core symptoms of autism spectrum disorder. J. Zhejiang Univ.-Sci. B 2024, 25, 956–971. [Google Scholar] [CrossRef]
- McPheeters, M.L.; Warren, Z.; Sathe, N.; Bruzek, J.L.; Krishnaswami, S.; Jerome, R.N.; Veenstra-VanderWeele, J. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics 2011, 127, e1312–e1321. [Google Scholar] [CrossRef]
- Reyes, E.; Pizarro, L. Role of pharmacological therapy in autism spectrum disorders. Rev. Med. Clín. Condes 2022, 33, 387–399. (In Spanish) [Google Scholar] [CrossRef]
- Valencia-Cifuentes, V.; Becerra, L. ABA therapies for autism: A single solution to a multiple problem? Sal. Scie. Spirit. 2019, 5, 50–53. (In Spanish) [Google Scholar]
- Mulas, F.; Ros-Cervera, G.; Millá, M.; Etchepareborda, M.; Abad, L.; de Meneses, T. Intervention models for children with autism. Rev. Neurol. 2010, 50 (Suppl. S3), 77–84. (In Spanish) [Google Scholar]
- Piñeros-Ortiz, S.; Toro-Herrera, S. General concepts about ABA in children with Autism Spectrum Disorder. Rev. Fac. Med. 2012, 60, 60–66. (In Spanish) [Google Scholar]
- Sanz-Cervera, P.; Fernández-Andrés, M.; Pastor-Cerezuela, G.; Tárraga-Mínguez, R. Effectiveness of TEACCH-based interventions in autism spectrum disorder: A review study. Papeles Psicólogo 2018, 39, 40–50. (In Spanish) [Google Scholar] [CrossRef]
- Attwood, T. Framework for behavioral interventions. Child Adolesc. Psychiatr. Clin. N. Am. 2003, 12, 65–86. [Google Scholar] [CrossRef]
- Abelenda, A.; Rodríguez, E. Scientific evidence of sensory integration as an occupational therapy approach in autism. Medicina 2020, 80 (Suppl. S2), 41–46. (In Spanish) [Google Scholar]
- May-Benson, T.; Koomar, J. Systematic review of the research evidence examining the effectiveness of interventions using a sensory integrative approach for children. Am. J. Occup. Ther. 2010, 64, 403–414. [Google Scholar] [CrossRef]
- Roberts, J. A Review of the Research to Identify the Most Effective Models of Best Practice in the Management of Children with Autism Spectrum Disorders; Centre for Developmental Disability Studies: Sydney, Australia, 2003. [Google Scholar]
- Mesa-Gresa, P.; Pérez-Martínez, A.; Redolat-Iborra, R. Nicotine and animal models: What does the environmental enrichment paradigm offer us? Adicciones 2012, 24, 87–94. (In Spanish) [Google Scholar] [CrossRef]
- Peña, Y. Environmental Enrichment in Rats: Differential Effects Depending on Sex. Ph.D. Thesis, Universitat Autónoma de Barcelona, Barcelona, Spain, 2007. (In Spanish). [Google Scholar]
- Begemann, M.; Brand, B.; Ćurčić-Blake, B.; Aleman, A.; Sommer, I. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef]
- Figuracion, K.C.F.; Lewis, F.M. Environmental enrichment: A concept analysis. Nurs. Forum 2021, 56, 703–709. [Google Scholar] [CrossRef]
- Ratuski, A.S.; Weary, D.M. Environmental Enrichment for Rats and Mice Housed in Laboratories: A Metareview. Animals 2022, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Yerkes, R.M. Almost Human; Century/Random House: New York, NY, USA, 1925. [Google Scholar]
- Landolfo, E.; Berretta, E.; Balsamo, F.; Petrosini, L.; Gelfo, F. Cognition enhances cognition: A comprehensive analysis on cognitive stimulation protocols and their effects on cognitive functions in animal models. J. Neurosci. Methods 2024, 413, 110316. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.; Biagianti, B.; Francis, S.; Conelea, C.; Jacob, S. Social Cognitive Interventions for Adolescents with Autism Spectrum Disorders: A Systematic Review. J. Affect. Disord. 2020, 274, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Nowacka-Chmielewska, M.; Grabowska, K.; Grabowski, M.; Meybohm, P.; Burek, M.; Małecki, A. Running from Stress: Neurobiological Mechanisms of Exercise-Induced Stress Resilience. Int. J. Mol. Sci. 2022, 23, 13348. [Google Scholar] [CrossRef]
- Camino-Alarcón, J.; Robles-Bello, M.; Valencia-Naranjo, N.; Sarhani-Robles, A. A Systematic Review of Treatment for Children with Autism Spectrum Disorder: The Sensory Processing and Sensory Integration Approach. Children 2024, 11, 1222. [Google Scholar] [CrossRef]
- Zhao, L.R.; Willing, A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog. Neurobiol. 2018, 163-164, 5–26. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley and Sons: New York, NY, USA, 1949. [Google Scholar]
- Rosenzweig, M.R.; Krech, D.; Bennett, E.L.; Diamond, M.C. Effects of Environmental Complexity and Training on brain chemistry and anatomy: A replication and extension. J. Comp. Physiol. Psychol. 1962, 55, 429–437. [Google Scholar] [CrossRef]
- Steiner, B.; Kronenberg, G.; Jessberger, S.; Brandt, M.D.; Reuter, K.; Kempermann, G. Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 2004, 46, 41–52. [Google Scholar] [CrossRef]
- Goldberg, N.R.; Haack, A.K.; Meshul, C.K. Enriched environment promotes similar neuronal and behavioral recovery in a young and aged mouse model of Parkinson’s disease. Neuroscience 2011, 172, 443–452. [Google Scholar] [CrossRef]
- Begenisic, T.; Spolidoro, M.; Braschi, C.; Baaroncelli, L.; Milanese, M.; Pietra, G.; Fabbri, M.E.; Bonanno, G.; Cioni, G.; Maffei, L.; et al. Environmental enrichment decreases GABAergic inhibition and improves cognitive abilities, synaptic plasticity, and visual functions in a mouse model of Down syndrome. Front. Cell. Neurosci. 2011, 5, 1–9. [Google Scholar] [CrossRef]
- Diamond, M.C. Response of the brain to enrichment. An. Acad. Bras. Ciências 2001, 73, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ohline, S.M.; Abraham, W.C. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 2019, 145, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Van Praag, H.; Kempermann, G.; Gage, F. Neural consequences of environmental enrichment. Nat. Rev. Neurosci. 2000, 1, 191–198. [Google Scholar] [CrossRef]
- Ehninger, D.; Kempermann, G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb. Cortex 2003, 13, 845–851. [Google Scholar] [CrossRef]
- Viola, G.G.; Rodrigues, L.; Américo, J.C.; Hansel, G.; Vargas, R.S.; Biasibetti, R.; Swarowsky, A.; Gonçalves, C.A.; Xavier, L.L.; Achaval, M.; et al. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res. 2009, 1274, 47–54. [Google Scholar] [CrossRef]
- Soffié, M.; Hahn, K.; Terao, E.; Eclancher, F. Behavioural and glial changes in old rats following environmental enrichment. Behav. Brain Res. 1999, 101, 37–49. [Google Scholar] [CrossRef]
- Gao, Z.; Shen, X.; Han, Y.; Guo, Y.; Yuan, M.; Bi, X. Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast. 2022, 2022, 5766993. [Google Scholar] [CrossRef]
- Forbes, T.; Goldstein, E.; Dupree, J.; Jabłońska, B.; Scafidi, J.; Adams, K.L.; Imamura, Y.; Hashimoto-Torii, K.; Gallo, V. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat. Commun. 2020, 11, 964. [Google Scholar] [CrossRef]
- Li, Y.; Lu, J.; Zhang, J.; Gui, W.; Xie, W. Molecular insights into enriched environments and behavioral improvements in autism: A systematic review and meta-analysis. Front. Psychiatry 2024, 15, 1328240. [Google Scholar] [CrossRef]
- Sah, A.; Rooney, S.; Kharitonova, M.; Sartori, S.; Wolf, S.; Singewald, N. Enriched Environment Attenuates Enhanced Trait Anxiety in Association with Normalization of Aberrant Neuro-Inflammatory Events. Int. J. Mol. Sci. 2022, 23, 13052. [Google Scholar] [CrossRef]
- Mansouri, M.; Pouretemad, H.; Wegener, G.; Roghani, M.; Afshari, M.; Mallard, C.; Ardalan, M. Dual Profile of Environmental Enrichment and Autistic-Like Behaviors in the Maternal Separated Model in Rats. Int. J. Mol. Sci. 2021, 22, 1173. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.; Pouretemad, H.; Roghani, M.; Wegener, G.; Ardalan, M. Environmental Enrichment Ameliorates Repetitive Behaviors in a Rat Model of Autism. J. Neurodev. Cogn. 2022, 1, 108–117. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hara, Y.; Ago, Y.; Takano, E.; Hasebe, S.; Nakazawa, T.; Hashimoto, H.; Matsuda, T.; Takuma, K. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav. Brain Res. 2017, 333, 67–73. [Google Scholar] [CrossRef]
- Reynolds, S.; Lane, S.J.; Richards, L. Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders. J. Neurodev. Disord. 2010, 2, 120–132. [Google Scholar] [CrossRef]
- Marcotte, J.; Grandisson, M.; Milot, É. What makes home environments favorable to independence: Perspectives of autistic people and their parents. Disabil. Rehabil. 2022, 45, 1684–1695. [Google Scholar] [CrossRef]
Author | Main Findings | Brain Structure |
---|---|---|
Begenisic et al. [100] | Genetically modified mice showed improved synaptic plasticity and visuospatial memory after EE exposure. | Hippocampus |
Diamond et al. [101] | Rats in EE showed greater cortical thickness compared to standard and impoverished environments. | Cortex |
Diamond et al. [101] | Thirty-day exposure to EE induced more cortical thickness changes than eighty-day exposure. | Cortex |
Diamond et al. [101] | Social interaction was essential for maximizing EE effects. | Cortex |
Ehninger and Kempermann [104] | Forty days of EE exposure led to a significant increase in astrocyte numbers in the motor cortex layer 1. | Motor cortex |
Viola et al. [105] | EE exposure led to increased branching, number, and length of astrocytic processes in the hippocampus. | Hippocampus |
Soffié et al. [106] | EE reversed aging-related memory deficits, improved acquisition speed, and reduced astrocyte hypertrophy in aged rats. | Hippocampus and corpus callosum |
Forbes et al. [108] | EE promotes endogenous repair of hypoxia-induced white matter injury by enhancing oligodendroglial maturation and myelination. | White matter |
Sah et al. [110] | EE promotes a normalization of neuroinflammatory imbalances due to anxiety. | Dentate gyrus and medial prefrontal cortex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Arteaga, E.; Camacho-Candia, J.A.; Pluma-Romo, R.; Solís-Meza, M.I.; Villafuerte-Vega, M.N.; Aguilar-Guevara, F. Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells. Neuroglia 2025, 6, 18. https://doi.org/10.3390/neuroglia6020018
Hernández-Arteaga E, Camacho-Candia JA, Pluma-Romo R, Solís-Meza MI, Villafuerte-Vega MN, Aguilar-Guevara F. Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells. Neuroglia. 2025; 6(2):18. https://doi.org/10.3390/neuroglia6020018
Chicago/Turabian StyleHernández-Arteaga, Enrique, Josué Antonio Camacho-Candia, Roxana Pluma-Romo, María Isabel Solís-Meza, Myriam Nayeli Villafuerte-Vega, and Francisco Aguilar-Guevara. 2025. "Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells" Neuroglia 6, no. 2: 18. https://doi.org/10.3390/neuroglia6020018
APA StyleHernández-Arteaga, E., Camacho-Candia, J. A., Pluma-Romo, R., Solís-Meza, M. I., Villafuerte-Vega, M. N., & Aguilar-Guevara, F. (2025). Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells. Neuroglia, 6(2), 18. https://doi.org/10.3390/neuroglia6020018