The Multifaceted Roles of Glia: From Cellular Functions to Neurological Implications

A special issue of Neuroglia (ISSN 2571-6980).

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1323

Special Issue Editor


E-Mail Website
Guest Editor
Departament of Pharmacology and Psychobiology, Roberto Alcantara Gomes Biology Institute (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro 20551-030, Brazil
Interests: developmental neurobiology; glial cell differentiation; hypoxia–ischemia in neurodevelopment

Special Issue Information

Dear Colleagues,

We are excited to announce a Special Issue titled "The Multifaceted Roles of Glia: From Cellular Functions to Neurological Implications". This Special Issue aims to explore the diverse and critical functions of glial cells in the central nervous system, highlighting their roles not only in supporting neuronal health but also in modulating synaptic activity, neuroinflammation, and neurodegeneration. As researchers in the field, we invite you to contribute your findings that delve into the complex interactions between glia and neurons, the implications of glial dysfunction in various neurological disorders, and innovative therapeutic approaches targeting glial cells. Your work can help illuminate the intricate network of cellular communications that underpin brain function and disease. Join us in advancing our understanding of glial biology and its significance in neuroscience. We look forward to your submissions that will enrich this essential dialogue in our field.

Dr. Penha Barradas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Neuroglia is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microglia
  • astroglia
  • oligodendroglia
  • neuroinflammation
  • glial roles in neurodevelopment
  • glial dysfunction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

27 pages, 708 KiB  
Review
Environmental Enrichment as a Possible Adjunct Therapy in Autism Spectrum Disorder: Insights from Animal and Human Studies on the Implications of Glial Cells
by Enrique Hernández-Arteaga, Josué Antonio Camacho-Candia, Roxana Pluma-Romo, María Isabel Solís-Meza, Myriam Nayeli Villafuerte-Vega and Francisco Aguilar-Guevara
Neuroglia 2025, 6(2), 18; https://doi.org/10.3390/neuroglia6020018 - 25 Apr 2025
Abstract
Background/Objectives: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition influenced by genetic, environmental, and epigenetic factors, leading to cognitive, emotional, and social impairments. Due to the heterogeneity of ASD, conventional therapies often have limited effectiveness, highlighting the need for complementary interventions. Enriched [...] Read more.
Background/Objectives: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition influenced by genetic, environmental, and epigenetic factors, leading to cognitive, emotional, and social impairments. Due to the heterogeneity of ASD, conventional therapies often have limited effectiveness, highlighting the need for complementary interventions. Enriched environments (EEs), characterized by enhanced sensory, cognitive, and motor stimulation, have shown promise in alleviating ASD symptoms. This review examines the role of glial cells in mediating the effects of EE. Methods: A literature review was conducted, analyzing studies on EE interventions in animal models and humans, with a focus on glial involvement in neuroplasticity and synaptic remodeling. Results: Evidence from animal models suggests that EE induces significant glial modifications, including increased synaptogenesis and enhanced neuronal connectivity. Studies in rodent models of ASD have demonstrated that EE reduces stereotypical behaviors, improves social interactions, and enhances cognitive function, effects that are closely associated with astrocyte and microglia activity. Similarly, human studies indicate that EE interventions lead to reduced autism symptom severity and improved cognitive outcomes, further supporting the hypothesis that glial cells play a central role in mediating the beneficial effects of EE. Conclusions: This review highlights the potential of EE as a modulator of the brain’s microenvironment, emphasizing the critical role of glial processes in ASD intervention. These findings suggest that future therapeutic strategies for ASD should integrate approaches that specifically target a glial function to optimize intervention outcomes. However, further research is needed to optimize EE protocols and address ASD heterogeneity. Full article
Show Figures

Figure 1

16 pages, 2325 KiB  
Review
Central and Peripheral Immunity Responses in Parkinson’s Disease: An Overview and Update
by Ghaidaa Ebrahim, Hunter Hutchinson, Melanie Gonzalez and Abeer Dagra
Neuroglia 2025, 6(2), 17; https://doi.org/10.3390/neuroglia6020017 - 4 Apr 2025
Viewed by 408
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, with increasing evidence supporting the role of immune dysregulation in its pathophysiology. Neuroinflammation, mediated by microglial activation, pro-inflammatory cytokine production, and blood–brain barrier dysfunction, plays a crucial role in [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, with increasing evidence supporting the role of immune dysregulation in its pathophysiology. Neuroinflammation, mediated by microglial activation, pro-inflammatory cytokine production, and blood–brain barrier dysfunction, plays a crucial role in dopaminergic neuronal degeneration. Furthermore, peripheral immune changes, including T cell infiltration, gut microbiota dysbiosis, and systemic inflammation, contribute to disease progression. The bidirectional interaction between the central and peripheral immune systems suggests that immune-based interventions may hold therapeutic potential. While dopaminergic treatments remain the standard of care, immunomodulatory therapies, monoclonal antibodies targeting α-synuclein, and deep brain stimulation (DBS) have demonstrated immunological effects, though clinical efficacy remains uncertain. Advances in immune phenotyping offer new avenues for personalized treatment approaches, optimizing therapeutic responses by stratifying patients based on inflammatory biomarkers. This review highlights the complexities of immune involvement in PD and discusses emerging strategies targeting immune pathways to develop disease-modifying treatments. Full article
Show Figures

Figure 1

14 pages, 24413 KiB  
Review
Rosenfeld’s Staining: A Valuable Tool for In Vitro Assessment of Astrocyte and Microglia Morphology
by Alana Alves Farias, Ana Carla dos Santos Costa, Jéssica Teles Souza, Érica Novaes Soares, Cinthia Cristina de Oliveira Santos Costa, Ravena Pereira do Nascimento, Silvia Lima Costa, Victor Diogenes Amaral da Silva and Maria de Fátima Dias Costa
Neuroglia 2025, 6(2), 16; https://doi.org/10.3390/neuroglia6020016 - 3 Apr 2025
Viewed by 293
Abstract
In homeostasis, the glial cells support pivotal functions, such as neuronal differentiation, neuroprotection, nutrition, drug metabolism, and immune response in the central nervous system (CNS). Among these cells, astrocytes and microglia have been highlighted due to their role in the pathogenesis of several [...] Read more.
In homeostasis, the glial cells support pivotal functions, such as neuronal differentiation, neuroprotection, nutrition, drug metabolism, and immune response in the central nervous system (CNS). Among these cells, astrocytes and microglia have been highlighted due to their role in the pathogenesis of several diseases or due to their role in the defense against several insults (ex., chemicals, and pathogens). In Vitro cytological analysis of astrocytes and microglia has contributed to the understanding of the role of morphological changes in glial cells associated with a neuroprotective or neurotoxic phenotype. Currently, the main tools used for the investigation of glial cell morphology in culture are phase contrast microscopy or immunolabeling/fluorescence microscopy. However, generally, phase contrast microscopy does not generate images with high resolution and therefore does not contribute to visualizing a single cell morphology in confluent cell cultures. On the other hand, immunolabeling requires high-cost consumable antibodies, epifluorescence microscope or confocal microscope, and presents critical steps during the procedure. Therefore, identifying a fast, reproducible, low-cost alternative method that allows the evaluation of glial morphology is essential, especially for neuroscientists from low-income countries. This article aims to revise the use of Rosenfeld’s staining, as an alternative low-cost and easy-to-reproduce method to analyze astrocytic and microglial morphology in culture. Additionally, it shows Rosenfeld’s staining as a valuable tool to analyze changes in neural cell morphology in toxicological studies. Full article
Show Figures

Figure 1

18 pages, 689 KiB  
Review
Beyond the Neuron: The Integrated Role of Glia in Psychiatric Disorders
by André Demambre Bacchi
Neuroglia 2025, 6(2), 15; https://doi.org/10.3390/neuroglia6020015 - 25 Mar 2025
Viewed by 380
Abstract
In recent decades, substantial evidence has highlighted the integral roles of neuroglia, particularly astrocytes, microglia, oligodendrocytes, and ependymal cells, in the regulation of synaptic transmission, metabolic support, and immune mechanisms within the central nervous system. In addition to their structural role, these cells [...] Read more.
In recent decades, substantial evidence has highlighted the integral roles of neuroglia, particularly astrocytes, microglia, oligodendrocytes, and ependymal cells, in the regulation of synaptic transmission, metabolic support, and immune mechanisms within the central nervous system. In addition to their structural role, these cells actively modulate neurotransmitter homeostasis and influence neuronal plasticity, thereby affecting cognition, mood, and behavior. This review discusses how neuroglial alterations contribute to the pathophysiology of five common psychiatric disorders: major depression, bipolar disorder, anxiety disorders, attention-deficit/hyperactivity disorder (ADHD), and schizophrenia. We synthesized preclinical and clinical findings illustrating that glial dysfunction, including impaired myelination and aberrant neuroinflammatory responses, often parallels disease onset and severity. Moreover, we outline how disruptions in astrocytic glutamate uptake, microglia-mediated synaptic pruning, and blood–brain barrier integrity may underlie the neurobiological heterogeneity observed in these disorders. The therapeutic implications range from anti-inflammatory agents to investigational compounds that aim to stabilize glial function or promote remyelination. However, challenges due to interindividual variability, insufficient biomarkers, and the multifactorial nature of psychiatric illnesses remain. Advances in neuroimaging, liquid biopsy, and more precise molecular techniques may facilitate targeted interventions by stratifying patient subgroups with distinct glial phenotypes. Continued research is essential to translate these insights into clinically efficacious and safe treatments. Full article
Show Figures

Figure 1

Back to TopTop