Future of Neutron Star Studies with Fast Radio Bursts
Abstract
:1. Introduction
2. Different Channels for Magnetar Formation
- Core collapse;
- NS-NS coalescence;
- NS-WD coalescence;
- WD-WD coalescence;
- Accretion induced collapse (AIC).
3. Properties of the Surrounding Medium
4. Very Short-Term Periodicity and Quasiperiodic Features
5. Spin Periods
6. Long-Term Periodicity
7. Fundamental Theories
7.1. Testing the Equivalence Principle
7.2. Measuring the Photon Mass Limits
8. Discussion
8.1. Intergalactic Medium and Baryonic Matter
8.2. Gravitational Lensing of FRBs
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIC | Accretion-induced collapse |
BH | Black hole |
CBM | Circumburst medium |
CCSN | Core-collapse supernovae |
CMB | Cosmic microwave background |
DM | Dispersion measure |
FRB | Fast radio burst |
GR | General relativity |
GRB | Gamma-ray burst |
IGM | Intergalactic medium |
IGMF | Intergalactic magnetic fields |
ISM | Interstellar medium |
MW | Milky Way |
NS | Neutron star |
PSR | Radio pulsar |
PWN | Pulsar wind nebula |
RM | Rotation measure |
SGR | Soft gamma-ray repeater |
SNR | Supernova remnant |
WD | White dwarf |
References
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B. The Physics of Fast Radio Bursts. arXiv 2022, arXiv:2212.03972. [Google Scholar]
- CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Bij, A.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chawla, P.; et al. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 2020, 587, 54–58. [Google Scholar] [CrossRef]
- Bochenek, C.D.; Ravi, V.; Belov, K.V.; Hallinan, G.; Kocz, J.; Kulkarni, S.R.; McKenna, D.L. A fast radio burst associated with a Galactic magnetar. Nature 2020, 587, 59–62. [Google Scholar] [CrossRef]
- Li, C.K.; Lin, L.; Xiong, S.L.; Ge, M.Y.; Li, X.B.; Li, T.P.; Lu, F.J.; Zhang, S.N.; Tuo, Y.L.; Nang, Y.; et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron. 2021, 5, 378–384. [Google Scholar] [CrossRef]
- Mereghetti, S.; Savchenko, V.; Ferrigno, C.; Götz, D.; Rigoselli, M.; Tiengo, A.; Bazzano, A.; Bozzo, E.; Coleiro, A.; Courvoisier, T.J.L.; et al. INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. Lett. 2020, 898, L29. [Google Scholar] [CrossRef]
- Ridnaia, A.; Svinkin, D.; Frederiks, D.; Bykov, A.; Popov, S.; Aptekar, R.; Golenetskii, S.; Lysenko, A.; Tsvetkova, A.; Ulanov, M.; et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 2021, 5, 372–377. [Google Scholar] [CrossRef]
- Tavani, M.; Casentini, C.; Ursi, A.; Verrecchia, F.; Addis, A.; Antonelli, L.A.; Argan, A.; Barbiellini, G.; Baroncelli, L.; Bernardi, G.; et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nat. Astron. 2021, 5, 401–407. [Google Scholar] [CrossRef]
- Fryer, C.L.; Lloyd-Ronning, N.; Wollaeger, R.; Wiggins, B.; Miller, J.; Dolence, J.; Ryan, B.; Fields, C.E. Understanding the engines and progenitors of gamma-ray bursts. Eur. Phys. J. 2019, 55, 132. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.; Rothberg, B.; Palazzi, E.; Kann, D.A.; D’Avanzo, P.; Amati, L.; Klose, S.; Perego, A.; Pian, E.; Guidorzi, C.; et al. The Peculiar Short-duration GRB 200826A and Its Supernova. Astrophys. J. Lett. 2022, 932, 1. [Google Scholar] [CrossRef]
- Burns, E.; Svinkin, D.; Hurley, K.; Wadiasingh, Z.; Negro, M.; Younes, G.; Hamburg, R.; Ridnaia, A.; Cook, D.; Cenko, S.B.; et al. Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin. Astrophys. J. Lett. 2021, 907, L28. [Google Scholar] [CrossRef]
- Popov, S.B.; Postnov, K.A.; Pshirkov, M.S. Fast radio bursts. Phys. Uspekhi 2018, 61, 965. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 2021, 7, 56. [Google Scholar] [CrossRef]
- Katz, J.I. The Sources of Fast Radio Bursts. arXiv 2022, arXiv:2207.13241. [Google Scholar] [CrossRef]
- Popov, S.B.; Postnov, K.A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. arXiv 2007, arXiv:0710.2006. [Google Scholar]
- Popov, S.B. FRB emission mechanisms vs. observations. arXiv 2022, arXiv:2210.14268. [Google Scholar]
- Zhang, B. The physical mechanisms of fast radio bursts. Nature 2020, 587, 45–53. [Google Scholar] [CrossRef]
- The CHIME/FRB Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Cassanelli, T.; Chatterjee, S.; Chawla, P.; Cook, A.M.; et al. CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources. arXiv 2023, arXiv:2301.08762. [Google Scholar]
- CHIME Collaboration; Amiri, M.; Bandura, K.; Boskovic, A.; Chen, T.; Cliche, J.F.; Deng, M.; Denman, N.; Dobbs, M.; Fandino, M.; et al. An Overview of CHIME, the Canadian Hydrogen Intensity Mapping Experiment. Astrophys. J. Suppl. Ser. 2022, 261, 29. [Google Scholar] [CrossRef]
- Qian, L.; Yao, R.; Sun, J.; Xu, J.; Pan, Z.; Jiang, P. FAST: Its Scientific Achievements and Prospects. Innovation 2020, 1, 100053. [Google Scholar] [CrossRef]
- Manchester, R.N.; Hobbs, G.B.; Teoh, A.; Hobbs, M. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. 2005, 129, 1993–2006. [Google Scholar] [CrossRef]
- Smits, R.; Kramer, M.; Stappers, B.; Lorimer, D.R.; Cordes, J.; Faulkner, A. Pulsar searches and timing with the square kilometre array. Astron. Astrophys. 2009, 493, 1161–1170. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, T.; Goto, T.; On, A.Y.L.; Lu, T.Y.; Santos, D.J.D.; Ho, S.C.C.; Wang, T.W.; Kim, S.J.; Hsiao, T.Y.Y. Fast radio bursts to be detected with the Square Kilometre Array. Mon. Not. R. Astron. Soc. 2020, 497, 4107–4116. [Google Scholar] [CrossRef]
- Castorina, E.; Foreman, S.; Karagiannis, D.; Liu, A.; Masui, K.W.; Meerburg, P.D.; Newburgh, L.B.; O’Connor, P.; Obuljen, A.; Padmanabhan, H.; et al. Packed Ultra-wideband Mapping Array (PUMA): Astro2020 RFI Response. arXiv 2020, arXiv:2002.05072. [Google Scholar]
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 2014, 212, 6. [Google Scholar] [CrossRef] [Green Version]
- Gill, R.; Heyl, J. The birthrate of magnetars. Mon. Not. R. Astron. Soc. 2007, 381, 52–58. [Google Scholar] [CrossRef]
- Popov, S.B.; Pons, J.A.; Miralles, J.A.; Boldin, P.A.; Posselt, B. Population synthesis studies of isolated neutron stars with magnetic field decay. Mon. Not. R. Astron. Soc. 2010, 401, 2675–2686. [Google Scholar] [CrossRef]
- Gullón, M.; Pons, J.A.; Miralles, J.A.; Viganò, D.; Rea, N.; Perna, R. Population synthesis of isolated neutron stars with magneto-rotational evolution—II. From radio-pulsars to magnetars. Mon. Not. R. Astron. Soc. 2015, 454, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Beniamini, P.; Hotokezaka, K.; van der Horst, A.; Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 2019, 487, 1426–1438. [Google Scholar] [CrossRef]
- Popov, S.B. Origins of magnetars in binary systems. Astron. Astrophys. Trans. 2016, 29, 183–192. [Google Scholar]
- Hu, R.C.; Zhu, J.P.; Qin, Y.; Shao, Y.; Zhang, B.; Yu, Y.W.; Liang, E.W.; Liu, L.D.; Wang, B.; Shu, X.W.; et al. Formation of Fast-spinning Neutron Stars in Close Binaries and Magnetar-driven Stripped-envelope Supernovae. arXiv 2023, arXiv:2301.06402. [Google Scholar]
- Kokubo, M.; Mitsuda, K.; Sugai, H.; Ozaki, S.; Minowa, Y.; Hattori, T.; Hayano, Y.; Matsubayashi, K.; Shimono, A.; Sako, S.; et al. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy. Astrophys. J. 2017, 844, 95. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Bannister, K.W.; Lenc, E.; Cho, H.; Ekers, R.; Day, C.K.; Deller, A.T.; Flynn, C.; James, C.W.; Macquart, J.P.; et al. Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophys. J. Lett. 2020, 901, L20. [Google Scholar] [CrossRef]
- Bannister, K.W.; Deller, A.T.; Phillips, C.; Macquart, J.P.; Prochaska, J.X.; Tejos, N.; Ryder, S.D.; Sadler, E.M.; Shannon, R.M.; Simha, S.; et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 2019, 365, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, S.; Heintz, K.E.; Aggarwal, K.; Marnoch, L.; Day, C.K.; Sydnor, J.; Burke-Spolaor, S.; Law, C.J.; Xavier Prochaska, J.; Tejos, N.; et al. Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astron. J. 2022, 163, 69. [Google Scholar] [CrossRef]
- Kirsten, F.; Marcote, B.; Nimmo, K.; Hessels, J.W.T.; Bhardwaj, M.; Tendulkar, S.P.; Keimpema, A.; Yang, J.; Snelders, M.P.; Scholz, P.; et al. A repeating fast radio burst source in a globular cluster. Nature 2022, 602, 585–589. [Google Scholar] [CrossRef]
- Gordon, A.C.; Fong, W.f.; Kilpatrick, C.D.; Eftekhari, T.; Leja, J.; Prochaska, J.X.; Nugent, A.E.; Bhandari, S.; Blanchard, P.K.; Caleb, M.; et al. The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors. arXiv 2023, arXiv:2302.05465. [Google Scholar]
- Postnov, K.A.; Kuranov, A.G.; Mitichkin, N.A. Spins of black holes in coalescing compact binaries. Phys. Uspekhi 2019, 62, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Toonen, S.; Perets, H.B.; Igoshev, A.P.; Michaely, E.; Zenati, Y. The demographics of neutron star—White dwarf mergers. Rates, delay-time distributions, and progenitors. Astron. Astrophys. 2018, 619, A53. [Google Scholar] [CrossRef] [Green Version]
- Maoz, D.; Hallakoun, N.; Badenes, C. The separation distribution and merger rate of double white dwarfs: Improved constraints. Mon. Not. R. Astron. Soc. 2018, 476, 2584–2590. [Google Scholar] [CrossRef] [Green Version]
- Fryer, C.; Benz, W.; Herant, M.; Colgate, S.A. What Can the Accretion-induced Collapse of White Dwarfs Really Explain? Astrophys. J. 1999, 516, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Kremer, K.; Li, D.; Lu, W.; Piro, A.L.; Zhang, B. Prospects for Detecting Fast Radio Bursts in Globular Clusters of Nearby Galaxies. arXiv 2022, arXiv:2210.04907. [Google Scholar] [CrossRef]
- Bhandari, S.; Flynn, C. Probing the Universe with Fast Radio Bursts. Universe 2021, 7, 85. [Google Scholar] [CrossRef]
- Chawla, P.; Kaspi, V.M.; Ransom, S.M.; Bhardwaj, M.; Boyle, P.J.; Breitman, D.; Cassanelli, T.; Cubranic, D.; Dong, F.Q.; Fonseca, E.; et al. Modeling Fast Radio Burst Dispersion and Scattering Properties in the First CHIME/FRB Catalog. Astrophys. J. 2022, 927, 35. [Google Scholar] [CrossRef]
- Michilli, D.; Seymour, A.; Hessels, J.W.T.; Spitler, L.G.; Gajjar, V.; Archibald, A.M.; Bower, G.C.; Chatterjee, S.; Cordes, J.M.; Gourdji, K.; et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 2018, 553, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Piro, A.L. The Impact of a Supernova Remnant on Fast Radio Bursts. Astrophys. J. Lett. 2016, 824, L32. [Google Scholar] [CrossRef] [Green Version]
- Piro, A.L.; Gaensler, B.M. The Dispersion and Rotation Measure of Supernova Remnants and Magnetized Stellar Winds: Application to Fast Radio Bursts. Astrophys. J. 2018, 861, 150. [Google Scholar] [CrossRef] [Green Version]
- Margalit, B.; Metzger, B.D. A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion-Electron Wind Nebula. Astrophys. J. Lett. 2018, 868, L4. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Feng, Y.; Yang, Y.P.; Zhang, Y.K.; Li, D.; Niu, C.H.; Wang, P.; Xue, M.Y.; Zhang, B.; Burke-Spolaor, S.; et al. Magnetic Field Reversal around an Active Fast Radio Burst. arXiv 2022, arXiv:2203.08151. [Google Scholar] [CrossRef]
- Yang, Y.P.; Xu, S.; Zhang, B. Faraday rotation measure variations of repeating fast radio burst sources. Mon. Not. R. Astron. Soc. 2023, 520, 2039–2054. [Google Scholar] [CrossRef]
- Mckinven, R.; Gaensler, B.M.; Michilli, D.; Masui, K.; Kaspi, V.M.; Su, J.; Bhardwaj, M.; Cassanelli, T.; Chawla, P.; Dong, F.; et al. Revealing the Dynamic Magneto-ionic Environments of Repeating Fast Radio Burst Sources through Multi-year Polarimetric Monitoring with CHIME/FRB. arXiv 2023, arXiv:2302.08386. [Google Scholar] [CrossRef]
- Kilpatrick, C.D.; Burchett, J.N.; Jones, D.O.; Margalit, B.; McMillan, R.; Fong, W.f.; Heintz, K.E.; Tejos, N.; Escorial, A.R. Deep Optical Observations Contemporaneous with Emission from the Periodic FRB 180916.J0158+65. Astrophys. J. Lett. 2021, 907, L3. [Google Scholar] [CrossRef]
- Cooper, A.J.; Rowlinson, A.; Wijers, R.A.M.J.; Bassa, C.; Gourdji, K.; Hessels, J.; van der Horst, A.J.; Kondratiev, V.; Michilli, D.; Pleunis, Z.; et al. Testing afterglow models of FRB 200428 with early post-burst observations of SGR 1935 + 2154. Mon. Not. R. Astron. Soc. 2022, 517, 5483–5495. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, B.T.; Murase, K. Multi-wavelength afterglow emission from bursts associated with magnetar flares and fast radio bursts. arXiv 2023, arXiv:2301.10184. [Google Scholar] [CrossRef]
- Chime/Frb Collaboration; Andersen, B.C.; Bandura, K.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Breitman, D.; Cassanelli, T.; Chatterjee, S.; Chawla, P.; et al. Sub-second periodicity in a fast radio burst. Nature 2022, 607, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Israel, G.L.; Belloni, T.; Stella, L.; Rephaeli, Y.; Gruber, D.E.; Casella, P.; Dall’Osso, S.; Rea, N.; Persic, M.; Rothschild, R.E. The Discovery of Rapid X-Ray Oscillations in the Tail of the SGR 1806-20 Hyperflare. Astrophys. J. 2005, 628, L53–L56. [Google Scholar] [CrossRef]
- Huppenkothen, D.; D’Angelo, C.; Watts, A.L.; Heil, L.; van der Klis, M.; van der Horst, A.J.; Kouveliotou, C.; Baring, M.G.; Göğüş, E.; Granot, J.; et al. Quasi-periodic Oscillations in Short Recurring Bursts of the Soft Gamma Repeater J1550-5418. Astrophys. J. 2014, 787, 128. [Google Scholar] [CrossRef]
- Li, X.; Ge, M.; Lin, L.; Zhang, S.N.; Song, L.; Cao, X.; Zhang, B.; Lu, F.; Xu, Y.; Xiong, S.; et al. Quasi-periodic Oscillations of the X-Ray Burst from the Magnetar SGR J1935-2154 and Associated with the Fast Radio Burst FRB 200428. Astrophys. J. 2022, 931, 56. [Google Scholar] [CrossRef]
- Pastor-Marazuela, I.; van Leeuwen, J.; Bilous, A.; Connor, L.; Maan, Y.; Oostrum, L.; Petroff, E.; Straal, S.; Vohl, D.; Adams, E.A.K.; et al. A fast radio burst with sub-millisecond quasi-periodic structure. arXiv 2022, arXiv:2202.08002. [Google Scholar]
- Chirenti, C.; Dichiara, S.; Lien, A.; Miller, M.C.; Preece, R. Kilohertz quasiperiodic oscillations in short gamma-ray bursts. arXiv 2023, arXiv:2301.02864. [Google Scholar] [CrossRef]
- Majid, W.A.; Pearlman, A.B.; Prince, T.A.; Wharton, R.S.; Naudet, C.J.; Bansal, K.; Connor, L.; Bhardwaj, M.; Tendulkar, S.P. A Bright Fast Radio Burst from FRB 20200120E with Sub-100 Nanosecond Structure. Astrophys. J. Lett. 2021, 919, L6. [Google Scholar] [CrossRef]
- Hankins, T.H.; Eilek, J.A. Radio Emission Signatures in the Crab Pulsar. Astrophys. J. 2007, 670, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Hewish, A.; Bell, S.J.; Pilkington, J.D.H.; Scott, P.F.; Collins, R.A. Observation of a Rapidly Pulsating Radio Source. Nature 1968, 217, 709–713. [Google Scholar] [CrossRef]
- Suvorov, A.G.; Melatos, A. Evolutionary implications of a magnetar interpretation for GLEAM-X J162759.5-523504.3. arXiv 2023, arXiv:2301.08541. [Google Scholar] [CrossRef]
- Chevalier, R.A. Neutron Star Accretion in a Supernova. Astrophys. J. 1989, 346, 847. [Google Scholar] [CrossRef]
- De Luca, A.; Caraveo, P.A.; Mereghetti, S.; Tiengo, A.; Bignami, G.F. A Long-Period, Violently Variable X-ray Source in a Young Supernova Remnant. Science 2006, 313, 814–817. [Google Scholar] [CrossRef]
- Ronchi, M.; Rea, N.; Graber, V.; Hurley-Walker, N. Long-period Pulsars as Possible Outcomes of Supernova Fallback Accretion. Astrophys. J. 2022, 934, 184. [Google Scholar] [CrossRef]
- Hu, C.R.; Huang, Y.F. A Comprehensive Analysis on Repeating Fast Radio Bursts. arXiv 2022, arXiv:2212.05242. [Google Scholar] [CrossRef]
- Elenbaas, C.; Watts, A.L.; Huppenkothen, D. The rotational phase dependence of magnetar bursts. Mon. Not. R. Astron. Soc. 2018, 476, 1271–1285. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Song, L.; Ge, M.; Tuo, Y.; Zhang, S.N.; Qu, J.; Cai, C.; Xie, S.; Liu, C.; Li, C.; et al. Burst phase distribution of SGR J1935+2154 based on Insight-HXMT. arXiv 2023, arXiv:2301.07333. [Google Scholar] [CrossRef]
- Chime/Frb Collaboration; Amiri, M.; Andersen, B.C.; Bandura, K.M.; Bhardwaj, M.; Boyle, P.J.; Brar, C.; Chawla, P.; Chen, T.; Cliche, J.F.; et al. Periodic activity from a fast radio burst source. Nature 2020, 582, 351–355. [Google Scholar] [CrossRef]
- Katz, J.I. Precession and Jitter in FRB 180916B. Mon. Not. R. Astron. Soc. Lett. 2022, 516, L58–L60. [Google Scholar] [CrossRef]
- Lyutikov, M.; Barkov, M.V.; Giannios, D. FRB Periodicity: Mild Pulsars in Tight O/B-star Binaries. Astrophys. J. Lett. 2020, 893, L39. [Google Scholar] [CrossRef] [Green Version]
- Barkov, M.V.; Popov, S.B. Formation of periodic FRB in binary systems with eccentricity. Mon. Not. R. Astron. Soc. 2022, 515, 4217–4228. [Google Scholar] [CrossRef]
- Fortin, F.; Garcia, F.; Simaz-Bunzel, A.; Chaty, S. A catalogue of high-mass X-ray binaries in the Galaxy: From the INTEGRAL to the Gaia era. arXiv 2023, arXiv:2302.02656. [Google Scholar] [CrossRef]
- Popov, S.B. Origin of Sources of Repeating Fast Radio Bursts with Periodicity in Close Binary Systems. Res. Notes Am. Astron. Soc. 2020, 4, 98. [Google Scholar] [CrossRef]
- Jones, D.I.; Andersson, N. Freely precessing neutron stars: Model and observations. Mon. Not. R. Astron. Soc. 2001, 324, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Link, B. Precession of Isolated Neutron Stars. In Proceedings of the Radio Pulsars, ASP Conference Proceedings, Crete, Greece, 26–29 August 2002; Astronomical Society of the Pacific Conference Series, Bailes, M., Nice, D.J., Thorsett, S.E., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 302, p. 241. [Google Scholar] [CrossRef]
- Beniamini, P.; Wadiasingh, Z.; Metzger, B.D. Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Mon. Not. R. Astron. Soc. 2020, 496, 3390–3401. [Google Scholar] [CrossRef]
- Rajwade, K.M.; Mickaliger, M.B.; Stappers, B.W.; Morello, V.; Agarwal, D.; Bassa, C.G.; Breton, R.P.; Caleb, M.; Karastergiou, A.; Keane, E.F.; et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 2020, 495, 3551–3558. [Google Scholar] [CrossRef]
- Cruces, M.; Spitler, L.G.; Scholz, P.; Lynch, R.; Seymour, A.; Hessels, J.W.T.; Gouiffés, C.; Hilmarsson, G.H.; Kramer, M.; Munjal, S. Repeating behaviour of FRB 121102: Periodicity, waiting times, and energy distribution. Mon. Not. R. Astron. Soc. 2021, 500, 448–463. [Google Scholar] [CrossRef]
- Popov, S.B. High magnetic field neutron stars and magnetars in binary systems. arXiv 2022, arXiv:2201.07507. [Google Scholar] [CrossRef]
- Gao, H.; Wu, X.F.; Mészáros, P. Cosmic Transients Test Einstein’s Equivalence Principle out to GeV Energies. Astrophys. J. 2015, 810, 121. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.J.; Gao, H.; Wu, X.F.; Mészáros, P. Testing Einstein’s Equivalence Principle With Fast Radio Bursts. Phys. Rev. Lett. 2015, 115, 261101. [Google Scholar] [CrossRef] [Green Version]
- Minazzoli, O.; Johnson-McDaniel, N.K.; Sakellariadou, M. Shortcomings of Shapiro delay-based tests of the equivalence principle on cosmological scales. Phys. Rev. D 2019, 100, 104047. [Google Scholar] [CrossRef] [Green Version]
- Sen, K.; Hashimoto, T.; Goto, T.; Kim, S.J.; Chen, B.H.; Santos, D.J.D.; Ho, S.C.C.; On, A.Y.L.; Lu, T.Y.; Hsiao, T.Y.Y. Constraining violations of the weak equivalence principle Using CHIME FRBs. Mon. Not. R. Astron. Soc. 2022, 509, 5636–5640. [Google Scholar] [CrossRef]
- Reischke, R.; Hagstotz, S.; Lilow, R. Consistent equivalence principle tests with fast radio bursts. Mon. Not. R. Astron. Soc. 2022, 512, 285–290. [Google Scholar] [CrossRef]
- Popov, S.B.; Stern, B.E. Soft gamma repeaters outside the Local Group. Mon. Not. R. Astron. Soc. 2006, 365, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.F.; Zhang, S.B.; Gao, H.; Wei, J.J.; Zou, Y.C.; Lei, W.H.; Zhang, B.; Dai, Z.G.; Mészáros, P. Constraints on the Photon Mass with Fast Radio Bursts. Astrophys. J. Lett. 2016, 822, L15. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, L.; Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K.; Spallicci, A.D.A.M. Photon mass limits from fast radio bursts. Phys. Lett. B 2016, 757, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, L.; Ellis, J.; Mavromatos, N.E.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K.; Spallicci, A.D.A.M. FRB 121102 casts new light on the photon mass. Phys. Lett. B 2017, 768, 326–329. [Google Scholar] [CrossRef]
- Xing, N.; Gao, H.; Wei, J.J.; Li, Z.; Wang, W.; Zhang, B.; Wu, X.F.; Mészáros, P. Limits on the Weak Equivalence Principle and Photon Mass with FRB 121102 Subpulses. Astrophys. J. Lett. 2019, 882, L13. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.J.; Wu, X.F. Combined limit on the photon mass with nine localized fast radio bursts. Res. Astron. Astrophys. 2020, 20, 206. [Google Scholar] [CrossRef]
- Lin, H.N.; Tang, L.; Zou, R. Revised constraints on the photon mass from well-localized fast radio bursts. arXiv 2023, arXiv:2301.12103. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Cordes, J.M.; Lazio, T.J.W. NE2001.I. A New Model for the Galactic Distribution of Free Electrons and its Fluctuations. arXiv 2002, arXiv:astro-ph/0207156. [Google Scholar] [CrossRef]
- Yao, J.M.; Manchester, R.N.; Wang, N. A New Electron-density Model for Estimation of Pulsar and FRB Distances. Astrophys. J. 2017, 835, 29. [Google Scholar] [CrossRef] [Green Version]
- Macquart, J.P.; Prochaska, J.X.; McQuinn, M.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Ekers, R.D.; James, C.W.; Marnoch, L.; et al. A census of baryons in the Universe from localized fast radio bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef]
- Wang, B.; Wei, J.J. An 8.0% Determination of the Baryon Fraction in the Intergalactic Medium from Localized Fast Radio Bursts. arXiv 2022, arXiv:2211.02209. [Google Scholar] [CrossRef]
- Zhou, B.; Li, X.; Wang, T.; Fan, Y.Z.; Wei, D.M. Fast radio bursts as a cosmic probe? Phys. Rev. D 2014, 89, 107303. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.B.; Wu, Q.; Wang, F.Y. Finding the Missing Baryons in the Intergalactic Medium with Localized Fast Radio Bursts. Astrophys. J. Lett. 2022, 940, L29. [Google Scholar] [CrossRef]
- Walters, A.; Ma, Y.Z.; Sievers, J.; Weltman, A. Probing diffuse gas with fast radio bursts. Phys. Rev. D 2019, 100, 103519. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Detecting helium reionization with fast radio bursts. Phys. Rev. D 2020, 101, 103019. [Google Scholar] [CrossRef]
- Heimersheim, S.; Sartorio, N.S.; Fialkov, A.; Lorimer, D.R. What It Takes to Measure Reionization with Fast Radio Bursts. Astrophys. J. 2022, 933, 57. [Google Scholar] [CrossRef]
- Ravi, V. Measuring the Circumgalactic and Intergalactic Baryon Contents with Fast Radio Bursts. Astrophys. J. 2019, 872, 88. [Google Scholar] [CrossRef] [Green Version]
- Ocker, S.K.; Cordes, J.M.; Chatterjee, S. Constraining Galaxy Halos from the Dispersion and Scattering of Fast Radio Bursts and Pulsars. Astrophys. J. 2021, 911, 102. [Google Scholar] [CrossRef]
- Vazza, F.; Brüggen, M.; Hinz, P.M.; Wittor, D.; Locatelli, N.; Gheller, C. Probing the origin of extragalactic magnetic fields with Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2018, 480, 3907–3915. [Google Scholar] [CrossRef]
- Hackstein, S.; Brüggen, M.; Vazza, F.; Gaensler, B.M.; Heesen, V. Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields. Mon. Not. R. Astron. Soc. 2019, 488, 4220–4238. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, H.; Loeb, A. A new limit on intergalactic magnetic fields on sub-kpc scales from fast radio bursts. arXiv 2023, arXiv:2301.08259. [Google Scholar] [CrossRef]
- Mannings, A.G.; Pakmor, R.; Prochaska, J.X.; van de Voort, F.; Simha, S.; Shannon, R.M.; Tejos, N.; Deller, A.; Rafelski, M. Fast Radio Bursts as Probes of Magnetic Fields in Galaxies at z < 0.5. arXiv 2022, arXiv:2209.15113. [Google Scholar] [CrossRef]
- Kader, Z.; Leung, C.; Dobbs, M.; Masui, K.W.; Michilli, D.; Mena-Parra, J.; McKinven, R.; Ng, C.; Bandura, K.; Bhardwaj, M.; et al. High-time resolution search for compact objects using fast radio burst gravitational lens interferometry with CHIME/FRB. Phys. Rev. D 2022, 106, 043016. [Google Scholar] [CrossRef]
- Kumar, P.; Beniamini, P. Gravitational lensing in the presence of plasma scattering with application to Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2023, 520, 247–258. [Google Scholar] [CrossRef]
- Muñoz, J.B.; Kovetz, E.D.; Dai, L.; Kamionkowski, M. Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter. Phys. Rev. Lett. 2016, 117, 091301. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.; Kader, Z.; Masui, K.W.; Dobbs, M.; Michilli, D.; Mena-Parra, J.; Mckinven, R.; Ng, C.; Bandura, K.; Bhardwaj, M.; et al. Constraining primordial black holes using fast radio burst gravitational-lens interferometry with CHIME/FRB. Phys. Rev. D 2022, 106, 043017. [Google Scholar] [CrossRef]
- Connor, L.; Ravi, V. Stellar prospects for FRB gravitational lensing. arXiv 2022, arXiv:2206.14310. [Google Scholar] [CrossRef]
- Li, Z.X.; Gao, H.; Ding, X.H.; Wang, G.J.; Zhang, B. Strongly lensed repeating fast radio bursts as precision probes of the universe. Nat. Commun. 2018, 9, 3833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Liu, B.; Li, Z.; Gao, H. Model-independent Estimation of H0 and ΩK from Strongly Lensed Fast Radio Bursts. Astrophys. J. 2021, 916, 70. [Google Scholar] [CrossRef]
- Crawford, F.; Hisano, S.; Golden, M.; Kikunaga, T.; Laity, A.; Zoeller, D. Four new fast radio bursts discovered in the Parkes 70-cm pulsar survey archive. Mon. Not. R. Astron. Soc. 2022, 515, 3698–3702. [Google Scholar] [CrossRef]
- Gupta, V.; Flynn, C.; Farah, W.; Bailes, M.; Deller, A.T.; Day, C.K.; Lower, M.E. The ultranarrow FRB20191107B, and the origins of FRB scattering. Mon. Not. R. Astron. Soc. 2022, 514, 5866–5878. [Google Scholar] [CrossRef]
- Platts, E.; Weltman, A.; Walters, A.; Tendulkar, S.P.; Gordin, J.E.B.; Kandhai, S. A living theory catalogue for fast radio bursts. Phys. Rep. 2019, 821, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Vachaspati, T. Cosmic Sparks from Superconducting Strings. Phys. Rev. Lett. 2008, 101, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, M.J. A better way of searching for black-hole explosions? Nature 1977, 266, 333–334. [Google Scholar] [CrossRef]
- Barrau, A.; Rovelli, C.; Vidotto, F. Fast radio bursts and white hole signals. Phys. Rev. D 2014, 90, 127503. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Castillo, D.E.; Bejger, M.; Blaschke, D.; Haensel, P.; Zdunik, L. Energy bursts from deconfinement in high-mass twin stars. arXiv 2015, arXiv:1506.08645. [Google Scholar] [CrossRef]
- Ge, M.; Yang, Y.P.; Lu, F.; Zhou, S.; Ji, L.; Zhang, S.; Zhang, B.; Zhang, L.; Wang, P.; Lee, K.; et al. A giant glitch from the magnetar SGR J1935+2154 before FRB 200428. arXiv 2022, arXiv:2211.03246. [Google Scholar] [CrossRef]
- Dong, F.A.; Chime/Frb Collaboration. CHIME/FRB Detection of a Bright Radio Burst from SGR 1935+2154. Astron. Telegr. 2022, 15681. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15681....1D/abstract (accessed on 14 February 2023).
- Frederiks, D.; Ridnaia, A.; Svinkin, D.; Lysenko, A.; Ulanov, M.; Tsvetkova, A. Konus-Wind detection of a short X-ray burst coincident with a bright radio burst from SGR 1935+2154. Astron. Telegr. 2022, 15686. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15686....1F/abstract (accessed on 14 February 2023).
- Li, X.B.; Zhang, S.N.; Xiong, S.L.; Li, C.K.; Ge, M.Y.; Liu, C.Z.; Song, L.M.; Tuo, Y.L.; Cai, C.; Zhang, Y.Q.; et al. Insight-HXMT detection of an X-ray burst from SGR J1935+2154 coinciding with the radio burst on 2022-10-21. Astron. Telegr. 2022, 15708. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15708....1L/abstract (accessed on 14 February 2023).
- Wang, C.W.; Xiong, S.L.; Zhang, Y.Q.; Liu, J.C.; Zheng, C.; Xue, W.C.; Tan, W.J.; Xie, S.L.; Yi, Q.B.; Zhao, Y.; et al. GECAM and HEBS detection of a short X-ray burst from SGR J1935+2154 associated with radio burst. Astron. Telegr. 2022, 15682. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15682....1W/abstract (accessed on 14 February 2023).
- Huang, Y.X.; Xu, H.; Xu, Y.H.; Wang, B.J.; Li, Z.X.; Zhang, C.F.; Xu, J.W.; Jiang, J.C.; Men, Y.P.; Gao, G.N.; et al. An intermediately bright radio burst detected from SGR 1935+2154 in S-band by Yunnan 40 m radio telescope. Astron. Telegr. 2022, 15707. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15707....1H/abstract (accessed on 14 February 2023).
- Maan, Y.; Leeuwen, J.v.; Straal, S.; Pastor-Marazuela, I. GBT detection of bright 5 GHz radio bursts from SGR 1935+2154, coincident with X-ray and 600 MHz bursts. Astron. Telegr. 2022, 15694. Available online: https://ui.adsabs.harvard.edu/abs/2022ATel15697....1M/abstract (accessed on 14 February 2023).
- Good, D.; Chime/Frb Collaboration. CHIME/FRB Detection of Three More Radio Bursts from SGR 1935+2154. Astron. Telegr. 2020, 14074. [Google Scholar]
- Younes, G.; Baring, M.G.; Harding, A.K.; Enoto, T.; Wadiasingh, Z.; Pearlman, A.B.; Ho, W.C.G.; Guillot, S.; Arzoumanian, Z.; Borghese, A.; et al. Magnetar spin-down glitch clearing the way for FRB-like bursts and a pulsed radio episode. Nat. Astron. 2023. [Google Scholar] [CrossRef]
- Khokhryakova, A.D.; Lyapina, D.A.; Popov, S.B. Prospects for Recording X-ray Flares Accompanying Fast Radio Bursts with the SRG/eROSITA Telescope. Astron. Lett. 2019, 45, 120–126. [Google Scholar] [CrossRef]
- Law, N.M.; Corbett, H.; Galliher, N.W.; Gonzalez, R.; Vasquez, A.; Walters, G.; Machia, L.; Ratzloff, J.; Ackley, K.; Bizon, C.; et al. Low-cost Access to the Deep, High-cadence Sky: The Argus Optical Array. Publ. Astron. Soc. Pac. 2022, 134, 035003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, S.B.; Pshirkov, M.S. Future of Neutron Star Studies with Fast Radio Bursts. Particles 2023, 6, 451-469. https://doi.org/10.3390/particles6010025
Popov SB, Pshirkov MS. Future of Neutron Star Studies with Fast Radio Bursts. Particles. 2023; 6(1):451-469. https://doi.org/10.3390/particles6010025
Chicago/Turabian StylePopov, Sergei B., and Maxim S. Pshirkov. 2023. "Future of Neutron Star Studies with Fast Radio Bursts" Particles 6, no. 1: 451-469. https://doi.org/10.3390/particles6010025
APA StylePopov, S. B., & Pshirkov, M. S. (2023). Future of Neutron Star Studies with Fast Radio Bursts. Particles, 6(1), 451-469. https://doi.org/10.3390/particles6010025