Long-Term Integrated Systems of Green Manure and Pasture Significantly Recover the Macrofauna of Degraded Soil in the Brazilian Savannah
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reyes-Sánchez, L.B.; Horn, R.; Costantini, E.A.C. (Eds.) Sustainable Soil Management as a Key to Preserving Soil Biodiversity and Stopping Its Degradation; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Kamau, S.; Barrios, E.; Karanja, N.K.; Ayuke, F.O.; Lehmann, J. Soil macrofauna abundance under dominant tree species increases along a soil degradation gradient. Soil Biol. Biochem 2017, 112, 35–46. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.-P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Obrycki, J.F.; Karlen, D.L. Is Corn Stover Harvest Predictable Using Farm Operation, Technology, and Management Variables? J. Agron. 2018, 110, 749–757. [Google Scholar] [CrossRef]
- Ranaivoson, L.; Naudin, K.; Ripoche, A.; Affholder, F.; Rabeharisoa, L.; Corbeels, M. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 2017, 37, 26. [Google Scholar] [CrossRef]
- Sawyer, J.E.; Woli, K.P.; Barker, D.W.; Pantoja, J.L. Stover Removal Impact on Corn Plant Biomass, Nitrogen, and Use Efficiency. J. Agron. 2017, 109, 802–810. [Google Scholar] [CrossRef]
- Sithole, N.J.; Magwaza, L.S.; Mafongoya, P.L.; Thibaud, G.R. Long-term impact of no-till conservation agriculture on abundance and order diversity of soil macrofauna in continuous maize monocropping system. Acta Agric. Scand. B Soil Plant Sci. 2018, 68, 220–229. [Google Scholar] [CrossRef]
- Elbasiouny, H.; El-Ramady, H.; Elbehiry, F.; Rajput, V.D.; Minkina, T.; Mandzhieva, S. Plant Nutrition under Climate Change and Soil Carbon Sequestration. Sustainability 2022, 14, 914. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Jouquet, P.; Chintakunta, S.; Bottinelli, N.; Subramanian, S.; Caner, L. The influence of fungus-growing termites on soil macro and micro-aggregates stability varies with soil type. Appl. Soil Ecol. 2016, 101, 117–123. [Google Scholar] [CrossRef]
- Kaiser, D.; Lepage, M.; Konaté, S.; Linsenmair, K.E. Ecosystem services of termites (Blattoidea: Termitoidae) in the traditional soil restoration and cropping system Zaï in northern Burkina Faso (West Africa). Agric. Ecosyst. Environ. 2017, 236, 198–211. [Google Scholar] [CrossRef]
- Lima, S.S.; Pereira, M.G.; Pereira, R.N.; de Pontes, R.M.; Rossi, C.Q.; de Lima, S.S.; Pereira, M.G.; Pereira, R.N.; de Pontes, R.M.; Rossi, C.Q. Termite Mounds Effects on Soil Properties in the Atlantic Forest Biome. Rev. Bras. Cienc. Solo 2018, 42. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Dougherty, W.J.; Fang, Y.; Badgery, W.; Hoyle, F.C.; Dalal, R.C.; Cowie, A.L. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Tillage Res. 2018, 175, 71–81. [Google Scholar] [CrossRef]
- Kitamura, A.E.; Tavares, R.L.M.; Alves, M.C.; Souza, Z.M.; Siqueira, D.S. Soil macrofauna as bioindicator of the restoration of degraded Cerrado soil. Cienc. Rural 2020, 50, 8. [Google Scholar] [CrossRef]
- Harit, A.; Moger, H.; Duprey, J.-L.; Gajalakshmi, S.; Abbasi, S.A.; Subramanian, S.; Jouquet, P. Termites can have greater influence on soil properties through the construction of soil sheetings than the production of above-ground mounds. Insect. Soc. 2017, 64, 247–253. [Google Scholar] [CrossRef]
- Oliveira, C.C.; Alves, F.V.; Almeida, R.G.; Gamarra, É.L.; Villela, S.D.J.; Almeida Martins, P.G.M. Thermal comfort indexes assessed in integrated production systems in the Brazilian savannah. Agrofor. Syst. 2018, 92, 1659–1672. [Google Scholar] [CrossRef]
- Sone, J.S.; Oliveira, P.T.S.; Zamboni, P.A.P.; Vieira, N.O.M.; Carvalho, G.A.; Macedo, M.C.M.; Araujo, A.R.; Montagner, D.B.; Alves Sobrinho, T. Effects of long-term crop-livestock-forestry systems on soil erosion and water infiltration in a Brazilian Cerrado site. Sustainability 2019, 11, 5339. [Google Scholar] [CrossRef]
- Alves, M.C.; Suzuki, L.G.A.S.; Suzuki, L.E.A.S. Densidade do solo e infiltração de água como indicadores da qualidade física de um Latossolo Vermelho distrófico em recuperação. Rev. Bras. Cienc. Solo 2007, 31, 617–625. [Google Scholar] [CrossRef]
- Campos, F.S.; Alves, M.C. Uso de lodo de esgoto na reestruturação de solo degradado. Rev. Bras. Cienc. Solo 2008, 32, 1389–1397. [Google Scholar] [CrossRef]
- Bonini, C.B.S.; Alves, M.C. Aggregate stability of a degraded Oxisol in restoration with green manure, lime and gypsum. Rev. Bras. Cienc. Solo 2011, 35, 1263–1270. [Google Scholar] [CrossRef]
- Bonini, C.D.S.B.; Alves, M.C.; Montanari, R. Recuperação da estrutura de um Latossolo vermelho degradado utilizando lodo de esgoto. Rev. Ciênc. Agron 2015, 10, 34–42. [Google Scholar] [CrossRef]
- Monreal, C.M.; Alves, M.C.; Schnitzer, M.; Filho, S.N.S.; Batista Bonini, C.D.S. Mass spectrometry of organic matter influenced by long-term pedogenesis and a short-term reclamation practice in an Oxisol of Brazil. Can. J. Soil Sci. 2016, 96, 64–85. [Google Scholar] [CrossRef]
- Giácomo, R.G.; Souza, R.C.; Alves, M.C.; Pereira, M.G.; Garcia de Arruda, O.; Paz González, A. Soil fauna: Bioindicator of soil restoration in Brazilian savannah. Rev. Ciênc. Agron. 2017, 12, 236–243. [Google Scholar]
- Neto, A.B.; Bonini, C.D.S.B.; Bisi, B.S.; dos Reis, A.R.; Coletta, L.F.S. Artificial neural network for classification and analysis of degraded soils. IEEE Lat. Am. Trans. 2017, 15, 503–509. [Google Scholar] [CrossRef]
- Tseng, C.L.; Alves, M.C.; Crestana, S. Quantifying physical and structural soil properties using X-ray microtomography. Geoderma 2018, 318, 78–87. [Google Scholar] [CrossRef]
- Santos, H.G.; Jocomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbrearas, J.F.; Coelho, M.R.; Almeida, J.Á.; Filho, J.C.A.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Rio de Janeiro, Brasil, 2018; p. 286. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy|NRCS, 12th ed.; EUA: Washington, DC, USA, 2014. [Google Scholar]
- Quaggio, J.A.; Raij, B.; Malavolta, E. Alternative use of the SMP-buffer solution to determine lime requirement of soils. Commun. Soil Sci. Plant Anal. 1985, 16, 245–260. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasilia, Brazil, 2017; p. 557. [Google Scholar]
- Velasquez, E.; Lavelle, P. Soil macrofauna as an indicator for evaluating soil-based ecosystem services in agricultural landscapes. Acta Oecol. 2019, 100, 103446. [Google Scholar] [CrossRef]
- Melman, D.A.; Kelly, C.; Schneekloth, J.; Calderón, F.; Fonte, S.J. Tillage and residue management drive rapid changes in soil macrofauna communities and soil properties in a semiarid cropping system of Eastern Colorado. Appl. Soil Ecol. 2019, 143, 98–106. [Google Scholar] [CrossRef]
- Webster, E.; Gaudin, A.C.M.; Pulleman, M.; Siles, P.; Fonte, S.J. Improved Pastures Support Early Indicators of Soil Restoration in Low-input Agroecosystems of Nicaragua. Environ. Manag. 2019, 64, 201–212. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 8 February 2023).
- Marchão, R.L.; Lavelle, P.; Celini, L.; Balbino, L.C.; Vilela, L.; Becquer, T. Soil macrofauna under integrated crop-livestock systems in a Brazilian Cerrado Ferralsol. Pesqui Agropecu Bras. 2009, 44, 1011–1020. [Google Scholar] [CrossRef]
- Franchini, J.C.; Hoffmann-Campo, C.B.; Torres, E.; Miyazawa, M.; Pavan, M.A. Organic composition of green manure during growth and its effect on cation mobilization in an acid oxisol. Comm. Soil Sci. Plant Anal. 2003, 34, 2045–2058. [Google Scholar] [CrossRef]
- Fonseca, W.S.; Martins, S.V.; Villa, P.M. Green Manure as an Alternative for Soil Restoration in a Bauxite Mining Environment in Southeast Brazil. Floresta E Ambiente 2023, 30, e20220041. [Google Scholar] [CrossRef]
- Raij, B.; Cantarella, H.; Quaggio, J.A.; Hiroce, R.; Furlani, M.C. Recomendações de Adubação e Calagem para o Estado de São Paulo; IAC: São Paulo, Brasil, 1986. [Google Scholar]
- Bowles, T.M.; Jackson, L.E.; Loeher, M.; Cavagnaro, T.R. Ecological intensification and arbuscular mycorrhizas: A meta-analysis of tillage and cover crop effects. J. Appl. Ecol. 2017, 54, 1785–1793. [Google Scholar] [CrossRef]
- Fox, J.T.; Zook, A.N.; Freiss, J.; Appel, B.; Appel, J.; Ozsuer, C.; Sarac, M. Thermal conversion of blended food production waste and municipal sewage sludge to restoreable products. J. Clean. Prod. 2019, 220, 57–64. [Google Scholar] [CrossRef]
- Murphy, B.W. Impact of soil organic matter on soil properties—A review with emphasis on Australian soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Abail, Z.; Whalen, J.K. Corn residue inputs influence earthworm population dynamics in a no-till corn-soybean rotation. Appl. Soil Ecol. 2018, 127, 120–128. [Google Scholar] [CrossRef]
- Lammel, D.R.; Azevedo, L.C.B.; Paula, A.M.; Armas, R.D.; Baretta, D.; Cardoso, E.J.B.N.; Lammel, D.R.; Azevedo, L.C.B.; Paula, A.M.; Armas, R.D.; et al. Microbiological and faunal soil attributes of coffee cultivation under different management systems in Brazil. Braz. J. Biol. 2015, 75, 894–905. [Google Scholar] [CrossRef]
- Gholami, S.; Sayad, E.; Gebbers, R.; Schirrmann, M.; Joschko, M.; Timmer, J. Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia 2016, 59, 27–36. [Google Scholar] [CrossRef]
- Suárez, L.R.; Josa, Y.T.P.; Samboni, E.J.A.; Cifuentes, K.D.L.; Bautista, E.H.D.; Salazar, J.C.S.; Suárez, L.R.; Josa, Y.T.P.; Samboni, E.J.A.; Cifuentes, K.D.L.; et al. Soil macrofauna under different land uses in the Colombian Amazon. Pesqui Agropecu Bras. 2018, 53, 1383–1391. [Google Scholar] [CrossRef]
- Wang, S.; Pan, K.; Tariq, A.; Zhang, L.; Sun, X.; Li, Z.; Sun, F.; Xiong, Q.; Song, D.; Olatunji, O.A. Combined effects of cropping types and simulated extreme precipitation on the community composition and diversity of soil macrofauna in the eastern Qinghai-Tibet Plateau. J. Soils Sediments 2018, 18, 3215–3227. [Google Scholar] [CrossRef]
- Baretta, D.; Brescovit, A.D.; Knysak, I.; Cardoso, E.J.B.N. Trap and soil monolith sampled edaphic spiders (Arachnida: Araneae) in Araucaria angustifolia forest. Sci. Agric. 2007, 64, 375–383. [Google Scholar] [CrossRef]
- Bartz, M.L.C.; Pasini, A.; Brown, G.G. Earthworms as soil quality indicators in Brazilian no-tillage systems. Appl. Soil Ecol. 2013, 69, 39–48. [Google Scholar] [CrossRef]
- Bottinelli, N.; Jouquet, P.; Capowiez, Y.; Podwojewski, P.; Grimaldi, M.; Peng, X. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil Tillage Res 2015, 146, 118–124. [Google Scholar] [CrossRef]
- Pauli, N.; Barrios, E.; Conacher, A.J.; Oberthür, T. Soil macrofauna in agricultural landscapes dominated by the Quesungual Slash-and-Mulch Agroforestry System, western Honduras. Appl. Soil Ecol. 2011, 47, 119–132. [Google Scholar] [CrossRef]
- Santos, D.C.; Guimarães Júnior, R.; Vilela, L.; Pulrolnik, K.; Bufon, V.B.; de S. França, A.F. Forage dry mass accumulation and structural characteristics of Piatã grass in silvopastoral systems in the Brazilian savannah. Agric. Ecosyst. Environ. 2016, 233, 16–24. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Persson, T. Restoration of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 2013, 57, 182–191. [Google Scholar] [CrossRef]
- Mariotte, P.; Le Bayon, R.-C.; Eisenhauer, N.; Guenat, C.; Buttler, A. Subordinate plant species moderate drought effects on earthworm communities in grasslands. Soil Biol. Biochem. 2016, 96, 119–127. [Google Scholar] [CrossRef]
- Potapov, A.M.; Goncharov, A.A.; Semenina, E.E.; Korotkevich, A.Y.; Tsurikov, S.M.; Rozanova, O.L.; Anichkin, A.E.; Zuev, A.G.; Samoylova, E.S.; Semenyuk, I.I.; et al. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur. J. Soil Biol. 2017, 82, 88–97. [Google Scholar] [CrossRef]
- Rampelotto, P.H.; de Siqueira Ferreira, A.; Barboza, A.D.M.; Roesch, L.F.W. Changes in Diversity, Abundance, and Structure of Soil Bacterial Communities in Brazilian Savanna Under Different Land Use Systems. Microb. Ecol. 2013, 66, 593–607. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Cerri, C.E.P.; Guimarães, R.M.L.; Cerri, C.C. Relating the visual soil structure status and the abundance of soil engineering invertebrates across land use change. Soil Tillage Res. 2017, 173, 49–52. [Google Scholar] [CrossRef]
- Geraei, D.S.; Hojati, S.; Landi, A.; Cano, A.F. Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Reg. 2016, 7, 29–37. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Culman, S.W.; Horwath, W.R.; Wade, J.; Cass, D.; Beniston, J.W.; Bowles, T.M.; Grandy, A.S.; Franzluebbers, A.J.; Schipanski, M.E.; et al. Comparison of Permanganate-Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. J. Soil Sci. Soc. Am. J. 2016, 80, 1352–1364. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Perez, G.; Chauvat, M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 2016, 94, 94–106. [Google Scholar] [CrossRef]
- Moura, E.G.; Aguiar, A.C.F.; Piedade, A.R.; Rousseau, G.X. Contribution of legume tree residues and macrofauna to the improvement of abiotic soil properties in the eastern Amazon. Appl. Soil Ecol. 2015, 86, 91–99. [Google Scholar] [CrossRef]
- Sun, F.; Pan, K.; Tariq, A.; Zhang, L.; Sun, X.; Li, Z.; Wang, S.; Xiong, Q.; Song, D.; Olatunji, O.A. The response of the soil microbial food web to extreme rainfall under different plant systems. Sci. Rep. 2016, 6, 37662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Tillage Res. 2015, 146, 39–46. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- de Vries, F.T.; Thébault, E.; Liiri, M.; Birkhofer, K.; Tsiafouli, M.A.; Bjørnlund, L.; Jørgensen, H.B.; Brady, M.V.; Christensen, S.; Ruiter, P.C.; et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. USA 2013, 110, 14296–14301. [Google Scholar] [CrossRef]
Code | Integrated System * |
---|---|
NC | Exposed soil; negative control |
SMB | Soil under native vegetation with cultivation of Urochloa decumbens |
MPB | Succession of Stizolobium sp. and U. decumbens |
GFPB | Succession of Cajanus sp., Canavalia sp. and U. decumbens |
CMPB | Succession of Stizolobium sp. and U. decumbens with limestone |
CGFPB | Succession of Cajanus sp., Canavalia sp. and pasture of U. decumbens with limestone |
CGeMPB | Succession of Stizolobium sp. and U. decumbens with limestone and gypsum |
CGeGFPB | Succession of Cajanus sp., Canavalia sp. and U. decumbens with limestone and gypsum |
PC | Forest; positive control |
Property | Depth (m) | |
---|---|---|
0.00–0.20 | 0.20–0.40 | |
Presin (mg dm−3) | 1.00 | 0.00 |
Organic matter (g dm−3) | 7.00 | 4.00 |
pH | 4.0 | 4.20 |
K (cmolc dm−3) | 0.20 | 0.20 |
Ca (cmolc dm−3) | 2.00 | 2.00 |
Mg (cmolc dm−3) | 1.00 | 1.00 |
Potential acidity (cmolc dm−3) | 20.00 | 20.00 |
Sum of exchangeable cations (cmolc dm−3) | 3.20 | 3.20 |
Cation-exchange capacity (cmolc dm−3) | 23.20 | 23.10 |
Saturation of exchangeable cations (%) | 14.00 | 14.00 |
Total porosity (m3 m−3) | 0.34 | 0.33 |
Macroporosity (m3 m−3) | 0.09 | 0.07 |
Microporosity (m3 m−3) | 0.25 | 0.26 |
Soil bulk density (kg m−3) | 1.60 | 1.74 |
Integrated System | Period of Sampling | |||||||
---|---|---|---|---|---|---|---|---|
Winter | Summer | |||||||
Index | Diversity | Dominance | Evenness | Total Abundance (Ind m−2) | Diversity | Dominance | Evenness | Total Abundance (Ind m−2) |
Exposed soil | 0.10 e | 1.00 a | 1.00 a | 0.15 c | 0.00 h | 0.00 h | 0.00 f | 0.00 i |
SMB | 1.61 b | 0.11 b | 0.23 b | 3.58 a | 0.97 c | 0.40 c | 0.54 b | 5.70 c |
MPB | 1.61 b | 0.15 b | 0.29 b | 2.90 b | 0.85 d | 0.35 d | 0.47 c | 5.35 d |
GFPB | 0.79 d | 0.67 a | 0.82 a | 2.05 b | 1.20 b | 0.48 b | 0.55 b | 3.65 e |
CMPB | 1.95 a | 0.23 b | 0.37 b | 1.93 b | 0.65 e | 0.23 e | 0.40 c | 2.60 f |
CGFPB | 1.61 b | 0.54 a | 0.70 a | 3.18 a | 0.20 g | 0.30 d | 0.18 e | 7.93 a |
CGeMPB | 1.61 b | 0.68 a | 0.85 a | 1.55 b | 1.41 a | 0.74 a | 0.88 a | 1.68 g |
CGeGFPB | 1.39 c | 0.15 b | 0.34 b | 2.45 b | 0.39 f | 0.12 f | 0.24 d | 5.95 b |
Native forest | 1.95 a | 0.33 b | 0.44 b | 3.58 a | 0.60 e | 0.35 d | 0.43 c | 1.08 h |
F (5%) | 4000 * | 1190 * | 1403 * | 0910 * | 6447 * | 4828 * | 3430 * | 4591 * |
CV (%) | 2.14 | 7.69 | 5.85 | 14.37 | 6.60 | 12.20 | 7.46 | 0.62 |
Integrated System | Presin | SOM | pH | K | Ca | Mg | H + Al3+ | Al3+ | SEC | CEC | SEC/CEC |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg dm−3) | (g dm−3) | (mmolc dm−3) | % | ||||||||
Soil Depth (m) | 0.00–0.10 | ||||||||||
Exposed soil | 3.00 D | 4.75 C | 5.00 A | 0.25 C | 2.00 C | 2.75 A | 19.75 A | 0.75 A | 5.50 A | 25.25 C | 22.75 AB |
SMB | 6.75 AB | 10.75 AB | 5.00 A | 1.00 AB | 5.00 AB | 4.25 B | 23.75 A | 1.75 A | 10.25 AB | 34.00 BC | 29.50 A |
MPB | 7.25 AB | 11.00 AB | 5.00 A | 1.25 B | 5.5 AB | 5.25 C | 25.25 A | 1.75 A | 12.00 AB | 37.25 BC | 32.00 A |
GFPB | 7.75 AB | 10.00 AB | 5.00 A | 0.75 AB | 5.25 AB | 4.25 B | 24.75 A | 1.75 A | 10.25 AB | 35.00 BC | 28.75 A |
CMPB | 8.00 AB | 11.75 B | 5.00 A | 1.00 AB | 6.25 AB | 5.00 BC | 25.25 A | 1.75 A | 12.25 B | 37.50 BC | 32.50 A |
CGFPB | 7.00 AB | 11.00 B | 5.00 A | 1.00 AB | 5.50 A | 4.50 B | 23.5 A | 1.25 A | 12.00 AB | 35.50 BC | 33.50 A |
CGeMPB | 8.75 A | 10.75 AB | 4.75 A | 1.00 AB | 5.50 A | 4.50 B | 25.00 A | 2.00 A | 11.00 AB | 36.00 BC | 30.25 A |
CGeGFPB | 7.25 AB | 9.00 AB | 5.00 A | 1.00 AB | 4.00 ABC | 3.25 A | 24.50 A | 2.25 A | 8.25 AB | 32.70 AB | 24.50 AB |
Native forest | 4.25 C | 12.75 B | 4.00 B | 1.00 AB | 2.50 AB | 2.75 A | 36.50 B | 6.75 B | 5.75 AB | 42.25 A | 13.00 C |
F-value | 2.83 * | 3.78 * | 16.00 * | 2.70 * | 7.33 * | 2.19 * | 14.99 * | 11.70 * | 3.94 * | 6.95 * | 5.49 * |
CV (%) | 15.17 | 12.00 | 3.43 | 9.90 | 10.58 | 14.28 | 9.19 | 13.97 | 13.27 | 9.87 | 11.89 |
MSD | 1.01 | 0.95 | 0.40 | 0.33 | 0.59 | 0.77 | 5.60 | 0.58 | 1.04 | 8.31 | 1.37 |
0.10–0.20 | |||||||||||
Exposed soil | 3.00 A | 3.25 B | 4.25 AB | 0.25 | 1.00 B | 1.00 A | 22.50 BC | 2.25 A | 2.25 B | 19.70 A | 9.25 BC |
SMB | 3.00 A | 5.00 B | 4.50 AB | 0.20 | 4.25 A | 2.00 C | 20.75 AB | 1.50 A | 6.25 A | 23.50 A | 24.00 A |
MPB | 3.75 A | 6.25 AB | 4.25 AB | 0.25 | 3.75 A | 2.00 C | 24.25 C | 2.75 A | 6.00 AB | 21.7 A | 20.75 AB |
GFPB | 3.00 A | 6.75 AB | 5.00 B | 0.25 | 3.50 A | 1.50 B | 22.00 BC | 1.75 A | 5.25 AB | 22.70 A | 19.50 ABC |
CMPB | 4.75 B | 5.75 AB | 4.75 AB | 0.25 | 3.75 A | 2.00 C | 23.00 BC | 2.25 A | 6.00 AB | 22.70 A | 21.25 AB |
CGFPB | 3.75 A | 5.75 AB | 4.75 AB | 0.25 | 3.75 A | 2.50 D | 21.50 BC | 1.50 A | 6.50 A | 24.5 A | 23.75 A |
CGeMPB | 3.00 A | 4.75 AB | 5.00 B | 0.25 | 3.50 A | 1.75 BC | 21.25 B | 1.25 A | 5.50 AB | 22.20 A | 20.75 AB |
CGeGFPB | 5.00 B | 4.50 AB | 4.75 AB | 0.25 | 2.25 AB | 1.25 A | 18.75 A | 2.25 A | 3.75 AB | 21.70 A | 12.50 ABC |
Native forest | 3.00 A | 8.00 A | 4.00 A | 0.25 | 1.00 B | 1.00 A | 32.75 D | 7.75 B | 2.25 B | 30.20 B | 6.75 C |
F-value | 0.43 | 4.11 * | 2.84 * | 1.12 | 9.15 * | 2.64 * | 68.16 * | 7.83 * | 6.36 * | 7.79 * | 10.83 * |
CV (%) | 19.05 | 10.76 | 9.15 | 18.88 | 11.45 | 12.00 | 4.07 | 17.31 | 12.60 | 9.04 | 11.89 |
MSD | 0.98 | 0.67 | 1.00 | 0.50 | 0.55 | 0.47 | 2.32 | 0.77 | 0.73 | 5.00 | 1.23 |
0.20–0.40 | |||||||||||
Exposed soil | 2.00 A | 3.00 A | 5.00 AB | 0.20 | 1.00 B | 1.00 A | 21.50 A | 2.00 A | 2.00 A | 23.50 A | 9.25 AB |
SMB | 3.00 AB | 3.75 ABC | 4.50 AB | 0.17 | 2.50 AB | 1.25 A | 21.00 A | 1.50 A | 3.75 AB | 24.75 A | 16.00 ABC |
MPB | 3.00 AB | 4.50 BC | 4.75 AB | 0.12 | 2.50 AB | 1.50 A | 21.00 A | 1.50 A | 4.00 AB | 25.00 A | 16.75 ABC |
GFPB | 2.00 A | 3.25 AB | 5.00 AB | 0.17 | 1.75 AB | 1.25 A | 21.75 A | 2.25 A | 3.00 AB | 24.75 A | 12.75 ABC |
CMPB | 2.00 A | 4.00 ABC | 5.20 AB | 0.20 | 3.25 A | 2.00 B | 21.25 A | 1.75 A | 5.25 AB | 26.50 A | 20.00 BC |
CGFPB | 3.00 AB | 5.00 C | 5.00 AB | 0.20 | 3.50 A | 2.00 B | 20.75 A | 1.50 A | 5.75 AB | 26.50 A | 22.00 C |
CGeMPB | 2.00 A | 3.50 AB | 5.00 AB | 0.12 | 2.25 AB | 1.25 A | 21.00 A | 1.75 A | 3.50 AB | 24.50 A | 14.75 ABC |
CGeGFPB | 2.00 A | 4.00 ABC | 5.00 AB | 0.17 | 2.00 AB | 1.25 A | 21.75 A | 2.25 A | 3.25 AB | 25.00 A | 13.75 ABC |
Native forest | 4.00 B | 7.00 D | 4.00 A | 0.22 | 1.00 B | 1.00 A | 31.00 B | 7.75 B | 2.00 A | 33.00 B | 7.00 BC |
F-value | 5.40 * | 22.80 * | 2.67 * | 1.99 | 4.08 * | 1.26 * | 21.38 * | 28.22 * | 3.58 * | 13.45 * | 5.41 * |
CV (%) | 14.34 | 10.29 | 9.50 | 27.20 | 13.72 | 12.92 | 6.33 | 9.16 | 14.51 | 5.90 | 11.38 |
MSD | 1.03 | 1.23 | 1.10 | 0.12 | 0.58 | 0.48 | 3.40 | 0.40 | 0.74 | 3.68 | 1.05 |
Bartlett’s Test of Sphericity | |||||
---|---|---|---|---|---|
Chi-square | 8500 | ||||
Degree of freedom | 325 | ||||
p-value | <0.05 * | ||||
Kaiser–Mayer–Olkin Test | |||||
Index/variable | Principal Component | ||||
PCI | PCII | PCIII | PCIV | PCV | |
Eigenvalue | 7.83 | 5.53 | 3.62 | 1.78 | 1.43 |
Percentage of variance | 30.12 | 21.29 | 13.93 | 6.84 | 5.50 |
Cumulative percentage of variance | 30.12 | 51.41 | 65.33 | 72.17 | 77.67 |
Loading | |||||
Spiders | 0.06 | −0.25 | −0.16 | 0.13 | 0.04 |
Beetles | 0.35 | 0.63 * | 0.32 | 0.40 * | 0.20 |
Adult millipedes | 0.24 | −0.08 | −0.22 | 0.32 | 0.41 * |
Earthworms | −0.10 | 0.78 * | 0.50 * | 0.01 | 0.06 |
Adult centipedes | 0.32 | −0.06 | −0.17 | −0.06 | −0.76 * |
Larval stages | 0.14 | 0.09 | −0.46 * | −0.14 | 0.68 * |
Eggs | 0.16 | 0.80 * | 0.53 * | 0.08 | 0.03 |
Termites | 0.65 * | 0.37 | 0.18 | −0.48 * | −0.05 |
Earwigs | 0.16 | 0.80 * | 0.53 * | 0.08 | 0.03 |
Ants | 0.17 | 0.20 | −0.28 | −0.21 | −0.12 |
White grubs | 0.15 | −0.01 | −0.52 * | 0.55 * | 0.06 |
Stinkbugs | 0.27 | 0.66 * | 0.43 * | 0.19 | −0.02 |
Crickets | 0.01 | 0.10 | −0.16 | −0.77 * | 0.29 |
Total of individuals | 0.69 * | 0.45 * | 0.09 | −0.42 * | 0.03 |
Total of orders | 0.49 * | 0.58 * | −0.34 | 0.24 | −0.14 |
Presin | 0.84 * | −0.35 | 0.12 | 0.06 | 0.03 |
SOM | 0.72 * | −0.55 * | 0.37 | 0.01 | −0.04 |
pH | 0.47 * | 0.43 * | −0.48 * | −0.07 | −0.17 |
K | 0.82 * | −0.42 * | 0.27 | −0.01 | 0.03 |
Ca | 0.90 * | −0.22 | −0.31 | 0.06 | 0.01 |
Mg | 0.96 * | −0.18 | 0.11 | 0.03 | 0.04 |
Potential acidity | −0.02 | −0.69 * | 0.67 * | 0.05 | 0.05 |
Al3+ | −0.42 * | −0.57 * | 0.63 * | −0.01 | 0.02 |
SEC | 0.96 * | −0.21 | −0.07 | 0.03 | 0.02 |
CEC | 0.60 * | −0.55 * | 0.48 * | −0.02 | 0.09 |
Saturation of exchangeable cations | 0.95 * | 0.01 | −0.23 | 0.04 | 0.03 |
Percentage of Contribution | |||||
Spiders | 0.04 | 1.13 | 0.71 | 0.95 | 0.09 |
Beetles | 1.57 | 7.07 | 2.78 | 9.04 | 2.87 |
Adult millipedes | 0.75 | 0.11 | 1.33 | 5.90 | 11.53 |
Earthworms | 0.00 | 10.94 | 6.92 | 0.00 | 0.23 |
Adult centipedes | 1.33 | 0.06 | 0.82 | 0.21 | 40.64 |
Larval stages | 0.24 | 0.13 | 5.91 | 1.07 | 32.36 |
Eggs | 0.32 | 11.53 | 7.65 | 0.39 | 0.07 |
Termites | 5.35 | 2.43 | 2.11 | 13.13 | 0.18 |
Earwigs | 0.32 | 11.53 | 7.65 | 0.39 | 0.07 |
Ants | 0.38 | 0.71 | 2.11 | 2.48 | 0.93 |
White grubs | 0.28 | 0.00 | 7.44 | 16.92 | 0.24 |
Stinkbugs | 0.93 | 7.98 | 5.08 | 2.04 | 0.03 |
Crickets | 0.00 | 0.18 | 0.72 | 33.28 | 5.91 |
Total of individuals | 6.06 | 3.72 | 0.23 | 9.87 | 0.05 |
Total of orders | 3.11 | 6.04 | 3.17 | 3.25 | 1.42 |
Presin | 9.01 | 2.26 | 0.39 | 0.24 | 0.05 |
SOM | 6.69 | 5.55 | 3.75 | 0.01 | 0.12 |
pH | 2.79 | 3.33 | 6.31 | 0.24 | 2.12 |
K | 8.59 | 3.17 | 1.97 | 0.00 | 0.08 |
Ca | 10.28 | 0.84 | 2.67 | 0.20 | 0.00 |
Mg | 11.84 | 0.60 | 0.32 | 0.06 | 0.09 |
Potential acidity | 0.01 | 8.65 | 12.33 | 0.14 | 0.19 |
Al3+ | 2.27 | 5.83 | 10.88 | 0.01 | 0.03 |
SEC | 11.87 | 0.78 | 0.13 | 0.05 | 0.02 |
CEC | 4.57 | 5.45 | 6.29 | 0.02 | 0.60 |
Saturation of exchangeable cations | 11.41 | 0.00 | 1.51 | 0.09 | 0.08 |
Chemical neutralization of toxic elements | Diversity of food sources on the soil surface | Biological decomposition of organic matter | Unavailability of aboveground biomass | Predatory activity |
Variable | Fitted Regression Model † | AIC | BIC | Radj2 |
---|---|---|---|---|
White grubs | White grubs (ind m−2) = 0.25 + 0.45 Ca * | 108.40 | 112.30 | 0.12 |
Adult centipedes | Adult centipedes (ind m−1) = −0.12 + 0.09 Ca * | 27.50 | 31.38 | 0.10 |
Termites | Termites (ind m−2) = 24.09 − 11.48 Ca * − 5.61 K + 20.67 Mg * − 4.75 Al | 245.20 | 252.90 | 0.32 |
Total of individuals | Total of individuals = 21.68 * + 8.98 Mg ** − 4.65 Al * | 246.90 | 252.10 | 0.38 |
Total of orders | Total of orders = 2.18 − 34.21 SEC + 19.01 Potential acidity * | 94.69 | 99.87 | 0.46 |
Soil organic matter | SOM (g dm−3) = 2.78 ** + 0.19 P + 0.01 Ca + 6.55 K ** | 97.43 | 103.90 | 0.82 |
Spiders | Spiders (ind m−2) = 0.69 ** − 0.30 Stinkbugs * | 53.46 | 57.35 | 0.07 |
Termites | Termites (ind m−2) = 18.81 ** + 10.73 Earthworms * | 250.10 | 254.00 | 0.11 |
Eggs | Eggs (ind m−2) = −0.01 + 0.19 Earthworms ** | −45.63 | 41.74 | 0.75 |
Earwigs | Earwigs (ind m−2) = −0.01 + 0.19 Earthworms ** | −45.63 | 41.74 | 0.75 |
Beetles | Beetles (ind m−2) = 0.90 ** + 1.07 Earthworms ** | 95.64 | 99.53 | 0.31 |
Stinkbugs | Stinkbugs (ind m−2) = 0.08 + 0.54 Earthworms ** | −46.10 | 49.99 | 0.43 |
Earwigs | Earwigs (ind m−2) = −0.05 + 0.04 Beetles * + 0.15 Stinkbugs ** | 37.49 | 32.31 | 0.67 |
Beetles | Beetles (ind m−2) = 0.84 ** + 1.57 Stinkbugs ** | 89.51 | 93.40 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonini, C.d.S.B.; Maciel, T.M.d.S.; Moreira, B.R.d.A.; Chitero, J.G.M.; Henrique, R.L.P.; Alves, M.C. Long-Term Integrated Systems of Green Manure and Pasture Significantly Recover the Macrofauna of Degraded Soil in the Brazilian Savannah. Soil Syst. 2023, 7, 56. https://doi.org/10.3390/soilsystems7020056
Bonini CdSB, Maciel TMdS, Moreira BRdA, Chitero JGM, Henrique RLP, Alves MC. Long-Term Integrated Systems of Green Manure and Pasture Significantly Recover the Macrofauna of Degraded Soil in the Brazilian Savannah. Soil Systems. 2023; 7(2):56. https://doi.org/10.3390/soilsystems7020056
Chicago/Turabian StyleBonini, Carolina dos Santos Batista, Thais Monique de Souza Maciel, Bruno Rafael de Almeida Moreira, José Guilherme Marques Chitero, Rodney Lúcio Pinheiro Henrique, and Marlene Cristina Alves. 2023. "Long-Term Integrated Systems of Green Manure and Pasture Significantly Recover the Macrofauna of Degraded Soil in the Brazilian Savannah" Soil Systems 7, no. 2: 56. https://doi.org/10.3390/soilsystems7020056