Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome
Abstract
:1. Introduction
Formation of Colour
2. Materials and Methods
2.1. Materials
2.2. Equipment and Characterization Methods
2.2.1. OM (Optical Microscope)
2.2.2. FORS (Fibre Optics Reflectance Spectroscopy)
2.2.3. Colorimetric Measurements
2.2.4. Reference Standards
2.2.5. PIXE (Particle Induced X-Ray Emission)
2.2.6. SEM-EDS (Scanning Electrons Microscope with Energy Dispersive X-ray Spectrometry)
2.2.7. μ-Raman Microscopy
3. Results
3.1. Colorimetric Measurements
3.2. Optical Microscope
3.3. FORS Spectra
3.4. Chemical Analyses
Bulk Composition
3.5. Crystalline Phases
3.6. Other Crystalline Phases and Inclusions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saguì, L.; Santopadre, P.; Verità, M. Technology, Colours, Forms, and Shapes in the 2nd Century Glass Opus Sectile Materials from the Villa of Lucius Verus in Rome. In Proceedings of the Annales du 18e Congrès de l’Association International pour l’Histoire du Verre, Thessaloniki, Greece, 20–25 September 2009; Ignatiadou, D., Antonaras, A., Eds.; ZITI Publishing: Thessaloniki, Greece, 2012; pp. 133–138. [Google Scholar]
- Saguí, L. La villa di Lucio Vero sulla via Clodia e le sue decorazioni in vetro. In Proceeding of Emergenze Storico-Archeologiche di un Settore del Suburbio di Roma: La Tenuta Dell’acqua Traversa; Vistoli, F., Ed.; Atti Della Giornata di Studio: Rome, Italy, 2003; pp. 211–228. [Google Scholar]
- Hughes, M.J. A technology study of opaque red glass of the Iron Age in Britain. Proc. Prehist. Soc. 1972, 38, 98–107. [Google Scholar] [CrossRef]
- Bimson, M. Opaque red glass: A review. In Early Vitreous Materials; British Museum Occasional Paper 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 165–171. ISBN 978-0861590568. [Google Scholar]
- Weyl, W.A. Coloured Glasses; Society of Glass Technology: Sheffield, UK, 1951; ISBN 9780900682063. [Google Scholar]
- Ahmed, A.A.; Ashour, G.M.; El-Shamy, T.M. The effect of melting conditions on the crystallization of cuprous oxide and copper in glass. In Proceedings of the 11th international Congress of Glass, Prague, Czechoslovakia, 4–8 July 1977; pp. 177–187. [Google Scholar]
- Volf, M.B. Chemical Approach to Glass; Elsevier Science Publishing Company Inc.: Amsterdam, The Netherlands, 1984; Volume 7, ISBN 0-444-99635-4. [Google Scholar]
- Brown, S.F.; Norton, F.H. Constitution of Copper-Red Glazes. J. Am. Ceram. Soc. 1959, 42, 499–503. [Google Scholar] [CrossRef]
- Tress, H.J. Ruby glass and related glasses from standpoint of the chemical potential of oxygen in glass. Part 1, Physics and Chemistry of Glasses. Glass Technol. 1962, 3, 28–36. [Google Scholar]
- Tress, H.J. Ruby glass and related glasses from standpoint of the chemical potential of oxygen in glass. Part 2, Gold and copper glasses. Glass Technol. 1962, 3, 95–106. [Google Scholar]
- Cable, M.; Smedley, J.W. The Replication of an opaque red glass from Nimrud. In Early Vitreous Materials; British Museum Occasional Paper 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 151–164. ISBN 978-0861590568. [Google Scholar]
- Bamford, C.R. Colour Generation and Control in Glass; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1977; Volume 3, ISBN 1520-6378. [Google Scholar]
- Brun, N.; Mazerolles, L.; Pernot, M. Microstructure of opaque red glass containing copper. J. Mater. Sci. Lett. 1991, 10, 1418–1420. [Google Scholar] [CrossRef]
- Brill, R.H.; Cahill, N.D. A Red Opaque Glass from Sardis and Some Thoughts on Red Opaque in General. J. Glass Stud. 1988, 30, 16–27. [Google Scholar]
- Ishida, S.; Takeuchi, N.; Hayashi, M.; Wakamatsu, M. Role of Sn2+ in development of red colour during reheating of copper glass. J. Non-Cryst. Solids 1987, 95, 793–800. [Google Scholar] [CrossRef]
- Padovani, S.; Sada, C.; Mazzoldi, P.; Brunetti, B.; Borgia, I.; Sgamellotti, A.; Giulivi, A.; D’Acapito, F.; Battaglin, G. Copper in glazes of Renaissance luster pottery: Nanoparticles, ions, and local environment. Appl. Phys. 2003, 93, 10058–10063. [Google Scholar] [CrossRef]
- Nakai, I.; Numako, C.; Hosono, H.; Yamasaki, K. Origin of the red colour of Satsuma copper-ruby glass as determined by EXAFS and optical absorption Spectroscopy. J. Am. Ceram. Soc. 1999, 82, 689–784. [Google Scholar] [CrossRef]
- Freestone, I.C. Composition and microstructure of opaque red glass, in Bismon and Freestone. In Early Vitreous Materials; British Museum Occasional Paper 56; Bimson, M., Freestone, I.C., Eds.; British Museum: London, UK, 1987; pp. 173–191. ISBN 978-0861590568. [Google Scholar]
- Ahmed, A.A.; Ashour, G.M. Effect of heat treatment on the crystallisation of cuprous oxide in glass. Glass Technol. 1981, 22, 24–33. [Google Scholar]
- Turner, W.E.S. Glass Fragments from Nimrud of the Eighth to the Sixth Century BC. Iraq 1955, 17, 57–68. [Google Scholar] [CrossRef]
- Brun, N.; Pernot, M. The Opaque Red Glass of Celtic Enamels from Continental Europe. Archaeometry 1992, 34, 235–252. [Google Scholar] [CrossRef]
- Davis, M. Sealing wax red glass in Late Iron Age Britain. PAST 2017, 86, 5–7. [Google Scholar]
- Freestone, I.C.; Stapleton, C.P.; Rigby, V. The production of red glass and enamel in the Late Iron Age, Roman and Byzantine periods. In Through a Glass Brightly: Studies in Byzantine and Medieval Art and Archaeology; Presented to David Buckton; Entwistle, C., Buckton, D., Eds.; Oxbow Books: Oxford, UK, 2003; pp. 142–154. ISBN 978-1785702518. [Google Scholar]
- Fiori, C. Production technology of Byzantine red mosaic glasses. Ceram. Int. 2015, 41, 3152–3157. [Google Scholar] [CrossRef]
- Moretti, C.; Gratuze, B. Vetri rossi al rame e avventurina. Confronto di analisi e ricette. Rivista Stazione Sperimentale del Vetro 1999, 3, 147–160. [Google Scholar]
- Zecchin, L. Vetro e Vetrai di Murano; Arsenale: Venice, Italy, 1989; Volume 2, pp. 327–333. ISBN 88-7743-048-6. [Google Scholar]
- Moretti, C.; Gratuze, B. I vetri rossi al rame. Confronto di analisi e ricette. In Proceedings of the Annales du 14e Congrès de l’Association International pour l’Histoire du Verre, Venezia-Milano, Italy, 27 October–1 November 1998; pp. 227–232. [Google Scholar]
- Moretti, C.; Gratuze, B.; Hreglich, S. L’avventurina: (II parte) la tecnologia e le analisi. Rivista Stazione Sperimentale del Vetro 2010, 6, 29–47. [Google Scholar]
- Rosi, F.; Grazia, C.; Gabrieli, F.; Romani, A.; Paolantoni, M.; Vivani, R.; Brunetti, B.G.; Colomban, P.; Miliani, C. UV–Vis-NIR and micro-Raman spectroscopies for the no destructive identification of Cd1—xZnxS solid solutions in cadmium yellow pigments. Microchem. J. 2016, 124, 856–867. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Murphy, A.B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, M.; Shi, S.; He, G.; Song, X.; Sun, Z. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition. Nanoscale Res. Lett. 2014, 9, 219. [Google Scholar] [CrossRef]
- Theja, G.S.; Lowrence, R.C.; Ravi, V.; Nagarajan, S.; Anthony, S.P. Synthesis of Cu2O micro/nanocrystals with tunable morphologies using coordinating ligands as structure controlling agents and antimicrobial studies. CrystEngComm 2014, 16, 9866–9872. [Google Scholar] [CrossRef]
- Wagner, B.; Nowak, A.; Bulska, E.; Hametner, K.; Günther, D. Critical assessment of the elemental composition of Corning archeological reference glasses by LA-ICP-MS. Anal. Bioanal. Chem. 2012, 402, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Bacci, M.; Corallini, A.; Orlando, A.; Picollo, M.; Radicati, B. The ancient stained windows by Nicolò di Pietro Gerini in Florence. A novel diagnostic tool for non-invasive in situ diagnosis. J. Cult. Herit. 2007, 8, 235–241. [Google Scholar] [CrossRef]
- Nagao, H.; Misonou, M.; Kawahara, H. Mechanism of Coloration in Copper-Stained Float Glass. J. Non-Cryst. Solids 1990, 120, 199–206. [Google Scholar] [CrossRef]
- Capatina, C. The study of copper ruby glass. Ceram. Silikàty 2005, 49, 283–286. [Google Scholar]
- Möncke, D.; Palles, D.; Palamara, E.; Papageorgiou, M.; Kamitsos, E.I.; Zacharias, N. Coloring Vitreous Materials: Pigments, Colloids, and Ions in Glasses and Glazes from the Mycenaean to Medieval Periods-Probed by Spectroscopic Techniques. In Proceedings of the Conference: 3rd ARCH_RNT Archaeological Research and New Technologies, Kalamata, Greece, 22–23 October 2010; pp. 153–164. [Google Scholar]
- Aceto, M.; Agostino, A.; Fenoglio, G.; Idone, A.; Gulmini, M.; Picollo, M.; Ricciardi, P.; Delaney, J.K. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR, reflectance spectrophotometry. Anal. Method 2014, 6, 1488–1500. [Google Scholar] [CrossRef]
- Sayre, E.V.; Smith, R.W. Compositional categories of ancient glass. Science 1961, 133, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Marii, F.; Rehren, T. Opaque Glass Cakes from the Petra Church and Their Interpretation. In Proceedings of the 36th International Symposium on Archaeometry, Quebec, QC, Canada, 2–6 May 2006; pp. 339–347. [Google Scholar]
- Verità, M.; Santopadre, P.; De Palma, G. Scientific investigation of Glass Mosaic tesserae from the 8th Century AD archaeological Site of Qusayr’amra (Jordan). Boll. ICR 2016, 32, 5–20. [Google Scholar]
- Tessera, E.; Verità, M.; Lazzarini, L.; Falcone, R.; Saguì, L.; Antonelli, F. Glass in imitation of exotic marbles: An analytical investigation of 2nd century AD Roman sectilia from the Gorga collection. J. Cult. Herit. 2019, in press. [Google Scholar] [CrossRef]
- Verità, M.; Renier, A.; Zecchin, S. Chemical analyses of ancient glass findings excavated in the Venetian lagoon. J. Cult. Herit. 2002, 34, 261–271. [Google Scholar] [CrossRef]
- Welham, K.; Jackson, C.M.; Smedley, J.W. Colour formation in sealing wax red glass. In Proceedings of the Annales du 14e Congrès de l’Association International pour l’Histoire du Verre, Venezia-Milano, Italy, 27 October–1 November 1998; pp. 11–15. [Google Scholar]
Sample | Colorimetric Coordinate | Dominant Wavelength (nm) | ||||
---|---|---|---|---|---|---|
L * | a * | b * | C | h | ||
R1 | 28.6 | 1.3 | 1.2 | 1.8 | 40.6 | 591.6 |
R3 | 39.1 | 25.0 | 13.7 | 28.4 | 28.7 | 604.1 |
R4 | 39.7 | 24.3 | 14.0 | 28.0 | 30.0 | 603.5 |
R7 | 41.0 | 26.1 | 13.6 | 29.4 | 27.6 | 606.9 |
R8 | 42.5 | 21.1 | 12.2 | 24.4 | 30.0 | 602.7 |
R9 | 35.4 | 23.5 | 10.8 | 25.8 | 24.7 | 609.1 |
R10 | 36.4 | 14.8 | 11.2 | 18.5 | 37.0 | 596.8 |
Sample | Colour | Fe2O3 | CuO | PbO | SnO2 | Sb2O3 |
---|---|---|---|---|---|---|
R-1 | 3.90 | 0.31 | 0.39 | 0.10 | 0.48 | |
R-2 | Red-group | 1.30 | 2.13 | 1.40 | 1.32 | 0.50 |
R-3 | Red-group | 1.50 | 2.09 | 8.65 | 0.54 | n.d |
R-4 | Red-group | 1.12 | 0.54 | 0.11 | 0.28 | 0.14 |
R-5 | Red-group | 1.07 | 1.80 | 1.20 | 0.94 | n.d |
R-6 | Red-group | 1.00 | 1.87 | 0.60 | 0.25 | n.d. |
R-7 | Red-group | 1.10 | 1.67 | 0.62 | 0.30 | 0.17 |
R-8 | Red-group | 1.05 | 2.27 | 0.52 | 0.57 | n.d. |
R-9 | Sealing wax | 0.42 | 9.0 | 28.3 | 0.23 | 1.60 |
R-10 | 4.20 | 2.85 | 1.00 | 0.25 | n.d. |
Sample | Size (μm) | Shape |
---|---|---|
R1 | 0.06–0.1 | (Cu°) |
R2 | 0.06–0.2 | (Cu°) |
R3 | 0.1–0.4 | (Cu°) |
R4 | 0.1–0.4 | (Cu°) |
R5 | 0.06–0.2 | (Cu°) |
R6 | 0.06 –0.15 | (Cu°) |
R7 | 0.06–0.2 | (Cu°) |
R8 | 0.06–0.2 | (Cu°) |
R9 | 50–150 | Dendritic (Cu2O) |
R9 | 0.5–1 | (Cu°) |
R10 | 0.5–1 | (Cu°) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandiera, M.; Lehuédé, P.; Verità, M.; Alves, L.; Biron, I.; Vilarigues, M. Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome. Heritage 2019, 2, 2597-2611. https://doi.org/10.3390/heritage2030159
Bandiera M, Lehuédé P, Verità M, Alves L, Biron I, Vilarigues M. Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome. Heritage. 2019; 2(3):2597-2611. https://doi.org/10.3390/heritage2030159
Chicago/Turabian StyleBandiera, Mario, Patrice Lehuédé, Marco Verità, Luis Alves, Isabelle Biron, and Marcia Vilarigues. 2019. "Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome" Heritage 2, no. 3: 2597-2611. https://doi.org/10.3390/heritage2030159
APA StyleBandiera, M., Lehuédé, P., Verità, M., Alves, L., Biron, I., & Vilarigues, M. (2019). Nanotechnology in Roman Opaque Red Glass from the 2nd Century AD. Archaeometric Investigation in Red Sectilia from the Decoration of the Lucius Verus Villa in Rome. Heritage, 2(3), 2597-2611. https://doi.org/10.3390/heritage2030159