Multispectral Analysis of Miniature Nuragic Bronze Flasks
Abstract
:1. Introduction
2. Materials
- The miniature flask #1 (lenght 3.60 cm, width 2.20 cm, weight 13.02 g) is the one that is best preserved, possibly due to depositional conditions and/or a better post-depositional care. It’s surface presents a vivid green color, clearly treated with paraloid. The upper part, where a suspension ring is missing, and the lower loops are deteriorated.
- Flask #2 (lenght 4.60 cm, width 1.10 cm, weight 14.46 g) does not differ morphologically from the previous one, but has much more pronounced wear on the surface, perhaps related to post-depositional phenomena, with loss of large portions of the loops and a general deterioration of the edges. Flasks #1 and #2 are similar to those from Vetulonia-Poggio del Bello [2,3] and those found at Su Tempiesu-Orune and Nurdòle-Orani (Sardinia). This flasks presents an orange surface. The central relief and parts of the neck are worn and present a light green color. It misses the lopps, stilyzed straps and the suspension ring.
- Flask #3 (length 3.40 cm, width 1.70 cm, weight 14.54 g) has, compared to the other samples, a shorter neck. It is comparable with the flask found in San Cerbone-Populonia. This flask presents a dark green color and is apparently less corroded in respect to the other previous flasks. The loops are preserved, but is misses the suspension ring.
3. Methodology
3.1. X-Ray Fluorescence
3.2. Raman Spectroscopy
3.3. XRMC Simulations
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Depalmas, A.; Melis, R.T. The Nuragic People: Their Settlements, Economic Activities and Use of the Land, Sardinia, Italy; Springer: Berlin, Germany, 2010; pp. 167–186. [Google Scholar]
- Lo Schiavo, F. Forme di Contenitori di Bronzo e di Ceramica: Documenti ed Ipotesi; CNR: Rome, Italy, 2000; pp. 207–223. [Google Scholar]
- Moravetti, A.; Alba, E.; Foddai, L. La Sardegna Nuragica: Storia e Materiali; Carlo Delfino: Sassari, Italy, 2014. [Google Scholar]
- Minoja, M.; Salis, G.; Usai, L. L’isola Delle Torri: Giovanni Lilliu e La Sardegna Nuragica: Catalogo Della Mostra; Carlo Delfino Editore: Cagliari, Italy, 2015; pp. 205–210. [Google Scholar]
- Corraine, P. Fiasche del pellegrino. Problematiche e Prospettive. In La Sardegna e il Mediterraneo: Dall’archeologia alla Società. Studi e Ricerche in Memoria di Ercole Contu, 2020. Available online: https://dumas.uniss.it/it/novita/la-sardegna-e-il-mediterraneo-dallarcheologia-alla-societa-due-giornate-di-studi-memoria-di-ercole-contu (accessed on 26 July 2021).
- Basoli, P. Nughedu San Nicolo (Sassari). Localita S’Istria. Necropoli ipogeica. Boll. Archeol. 1992, 13–15, 157. [Google Scholar]
- Ialongo, N. Il Santuario Nuragico di Monte Sant’Antonio di Siligo (SS). Studio Analitico dei Complessi Cultuali Della Sardegna Protostorica. Ph.D. Thesis, Archeologia Preistorica, Facoltà di Scienze Umanistiche, Sapienza—Università di Roma, Roma, Italy, 2011. [Google Scholar]
- Nocco, C. Reperti Metallici; Carlo Delfino Editore: Sassari, Italy, 2015. [Google Scholar]
- Usai, E.; Zucca, R. Nuovi Bronzi Nuragici dell’Antiquarium Arborense di Oristano: Contributo alle Rotte Mediterranee della Sardegna; Carocci Editore: Rome, Italy, 2011; pp. 323–350. [Google Scholar]
- Milletti, M. Cimeli D’Identità: Tra Etruria e Sardegna Nella Prima età del Ferro; Officina Edizioni: Rome, Italy, 2012. [Google Scholar]
- Atzeni, C.; Massidda, L.; Sanna, U. Le Indagini e i Risultati; Delfis: Cagliari, Italy, 2011; pp. 136–221. [Google Scholar]
- Brunetti, A.; Golosio, B. A new Monte Carlo code for simulation of the effect of irregular surfaces on X-ray spectra. Spectrochim. Acta Part B At. Spectrosc. 2014, 94, 58–62. [Google Scholar] [CrossRef]
- Brunetti, A.; Golosio, B.; Schoonjans, T.; Oliva, P. Use of Monte Carlo simulations for cultural heritage X-ray fluorescence analysis. Spectrochim. Acta Part B At. Spectrosc. 2015, 108, 15–20. [Google Scholar] [CrossRef]
- Angelini, E.; Rosalbino, F.; Grassin, S.; Ingo, G.; De Caro, T. Simulation of corrosion processes of buried archaeological bronze artefacts. In Corrosion of Metallic Heritage Artefacts; Woodhead Publishing: Sawston, UK, 2007; pp. 203–218. [Google Scholar]
- Schweizer, F. Bronze objects from lake sites: From patina to “biography”. In Ancient and Historic Metals: Conservation and Scientific Research: Proceedings of a Symposium Organized by the J. Paul Getty Museum and the Getty Conservation Institute, November 1991; Getty Conservation Institute: Marina del Rey, CA, USA, 1994; pp. 33–50. Available online: http://hdl.handle.net/10020/gci_pubs/ancientmetals (accessed on 26 July 2021).
- Guerra, M.F. The Study of the Characterisation and Provenance of Coins and Other Metalwork Using XRF, PIXE and Activation Analysis; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; pp. 378–416. [Google Scholar]
- Figueiredo, E.; Araújo, M.F.; Silva, R.J.; Vilaça, R. Characterisation of a Proto-historic bronze collection by micro-EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 296, 26–31. [Google Scholar] [CrossRef]
- Condamin, J.; Picon, M. The influence of corrosion and diffusion on the percentage of silver in Roman Denarii. Archaeometry 1964, 7, 98–105. [Google Scholar] [CrossRef]
- Sherman, J. The theoretical derivation of fluorescent X-ray intensities from mixtures. Spectrochim. Acta 1955, 7, 283–306. [Google Scholar] [CrossRef]
- Shiraiwa, T.; Fujino, N. Theoretical Calculation of Fluorescent X-Ray Intensities in Fluorescent X-Ray Spectrochemical Analysis. Jpn. J. Appl. Phys. 1966, 5, 886. [Google Scholar] [CrossRef]
- Mantler, M. X-ray fluorescence analysis of multiple-layer films. Anal. Chim. Acta 1986, 188, 25–35. [Google Scholar] [CrossRef]
- De Boer, D. Calculation of X-ray fluorescence intensities from bulk and multilayer samples. X-Ray Spectrom. 1990, 19, 145–154. [Google Scholar] [CrossRef]
- Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1747–1754. [Google Scholar] [CrossRef]
- Golosio, B.; Schoonjans, T.; Brunetti, A.; Oliva, P.; Masala, G.L. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput. Phys. Commun. 2014, 185, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Schoonjans, T.; Brunetti, A.; Golosio, B.; del Rio, M.S.; Solé, V.A.; Ferrero, C.; Vincze, L. The xraylib library for X-ray—Matter interactions. Recent developments. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 776–784. [Google Scholar] [CrossRef]
- Nørgaard, H.W. Portable XRF on prehistoric bronze artefacts: Limitations and use for the detection of Bronze Age metal workshops. Open Archaeol. 2017, 3, 101–122. [Google Scholar] [CrossRef]
- Ingo, G.; De Caro, T.; Riccucci, C.; Angelini, E.; Grassini, S.; Balbi, S.; Bernardini, P.; Salvi, D.; Bousselmi, L.; Cilingiroglu, A.; et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 2006, 83, 513–520. [Google Scholar] [CrossRef]
- Chiriu, D.; Ricci, P.; Cappellini, G. Raman characterization of XIV–XVI centuries Sardinian documents: Inks, papers and parchments. Vib. Spectrosc. 2017, 92, 70–81. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I. The Raman study of certain carbonates. Anal. Şt. Univ. Al. I. Cuza Iaşi Geol. 2009, 2, 97–112. [Google Scholar]
- Colomban, P.; Tournié, A.; Maucuer, M.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese bronze/brass patina–the search for specific Raman signatures. J. Raman Spectrosc. 2012, 43, 799–808. [Google Scholar] [CrossRef]
- Kosec, T.; Ropret, P.; Legat, A. Raman investigation of artificial patinas on recent bronze—Part II: Urban rain exposure. J. Raman Spectrosc. 2012, 43, 1587–1595. [Google Scholar] [CrossRef]
- Chan, H.Y.H.; Takoudis, C.G.; Weaver, M.J. Oxide film formation and oxygen adsorption on copper in aqueous media as probed by surface-enhanced Raman spectroscopy. J. Phys. Chem. B 1999, 103, 357–365. [Google Scholar] [CrossRef]
- Ospitali, F.; Chiavari, C.; Martini, C.; Bernardi, E.; Passarini, F.; Robbiola, L. The characterization of Sn-based corrosion products in ancient bronzes: A Raman approach. J. Raman Spectrosc. 2012, 43, 1596–1603. [Google Scholar] [CrossRef]
- McCann, L.I.; Trentelman, K.; Possley, T.; Golding, B. Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. J. Raman Spectrosc. 1999, 30, 121–132. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Hayez, V.; Costa, V.; Guillaume, J.; Terryn, H.; Hubin, A. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: Study of the chemical composition of artificial patinas used for restoration purposes. Analyst 2005, 130, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.K.; Li, L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Fang, J.L.; McDonnell, G. The colour of copper alloys. Hist. Metall. 2011, 45, 52. [Google Scholar]
Flask | Chemical Element (wt %) | ||||
---|---|---|---|---|---|
Bulk | Fe | Cu | Ag | Pb | Sn |
#1 | – | 59 | 0.2 | 0.9 | 40.3 |
#2 | – | 38.1 | 1.0 | 7.5 | 55.0 |
#3 | – | 58.6 | 0.5 | 7.5 | 35.0 |
Patina | |||||
#1 | 0.3 | 14 | 0.3 | – | 9.7 |
#2 | 2.7 | 16 | 0.6 | 0.6 | 8.5 |
#3 | 0.6 | 22 | 0.25 | 0.25 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocco, C.; Assunta Pisu, F.; Chiriu, D.; Depalmas, A.; Barcellos Lins, S.A.; Brunetti, A. Multispectral Analysis of Miniature Nuragic Bronze Flasks. Heritage 2021, 4, 1716-1724. https://doi.org/10.3390/heritage4030095
Nocco C, Assunta Pisu F, Chiriu D, Depalmas A, Barcellos Lins SA, Brunetti A. Multispectral Analysis of Miniature Nuragic Bronze Flasks. Heritage. 2021; 4(3):1716-1724. https://doi.org/10.3390/heritage4030095
Chicago/Turabian StyleNocco, Carlo, Francesca Assunta Pisu, Daniele Chiriu, Anna Depalmas, Sergio Augusto Barcellos Lins, and Antonio Brunetti. 2021. "Multispectral Analysis of Miniature Nuragic Bronze Flasks" Heritage 4, no. 3: 1716-1724. https://doi.org/10.3390/heritage4030095
APA StyleNocco, C., Assunta Pisu, F., Chiriu, D., Depalmas, A., Barcellos Lins, S. A., & Brunetti, A. (2021). Multispectral Analysis of Miniature Nuragic Bronze Flasks. Heritage, 4(3), 1716-1724. https://doi.org/10.3390/heritage4030095