The Art of Everyday Objects: A Non-Invasive In Situ Investigation of Materials and Techniques of Italian Pop Art Paintings on Aluminium
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthetic Organic Pigments
3.1.1. Blue and Green
3.1.2. Red
3.1.3. Yellow
3.1.4. Violet
3.2. “Special Effect” Pigments
3.3. Inorganic Pigments
3.4. Binders
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Learner, T. Modern paints: Uncovering the choices. In Modern Paints Uncovered; Learner, T.J.S., Smithen, P., Krueger, J.W., Schilling, M.R., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, 2007; pp. 3–16. [Google Scholar]
- Lomax, S.; Learner, T. A review of the classes, structures, and methods of analysis of synthetic organic pigments. J. Am. Inst. Conserv. 2007, 45, 107–125. [Google Scholar] [CrossRef]
- Rosi, F.; Daveri, A.; Moretti, P.; Brunetti, B.G.; Miliani, C. Interpretation of mid and near-infrared reflection properties of synthetic polymer paints for the non-invasive assessment of binding media in twentieth-century pictorial artworks. Microchem. J. 2016, 124, 898–908. [Google Scholar] [CrossRef]
- Scherrer, N.C.; Zumbuehl, S.; Delavy, F.; Fritsch, A.; Kuehnen, R. Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim. Acta A 2009, 73, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Bruni, S.; Guglielmi, V. Raman spectroscopy for the identification of materials in contemporary painting. In Raman Spectroscopy in Archaeology and Art History; Vandenabeele, P., Edwards, H., Eds.; Royal Society of Chemistry: London, UK, 2019; Volume 2, pp. 157–173. [Google Scholar] [CrossRef]
- Longoni, M.; Freschi, A.; Cicala, N.; Bruni, S. Non-invasive identification of synthetic organic pigments in contemporary art paints by visible–excited spectrofluorimetry and visible reflectance spectroscopy. Spectrochim. Acta A 2020, 229, 117907. [Google Scholar] [CrossRef] [PubMed]
- Poldi, G.; Anselmi, C.; Daveri, A.; Vagnini, M. Josef Albers’ Use of 20th Century Pigments: A Non-Invasive Analytical Approach. In Science and Art: The Contemporary Painted Surface; Sgamellotti, A., Brunetti, B.G., Miliani, C., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 67–94. [Google Scholar]
- Pinna, D.; Galeotti, M.; Mazzeo, R. (Eds.) Scientific Examination for the Investigation of Paintings: A Handbook for Conservators-Restorers; Centro Di: Firenze, Italy, 2009. [Google Scholar]
- Poldi, G.; Fiorucci, L.; Nicoletti, L.P. (Eds.) Pop ’60 Silvio Pasotti. Intorno al Fregio del Municipio di Segrate; Editoriale Umbra: Foligno, Italy, 2018. (In Italian) [Google Scholar]
- Cavallo, L. Silvio Pasotti. Catalogo Ragionato Della Pittura; Skira: Milano, Italy, 2008. (In Italian) [Google Scholar]
- Defeyt, C.; Vandenabeele, P.; Gilbert, B.; Van Pevenage, J.; Clootse, R.; Strivaya, D. Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists’ paints by X-ray powder diffraction, attenuated total reflectance micro-Fourier transform infrared spectroscopy and micro-Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1772–1780. [Google Scholar] [CrossRef]
- Poldi, G.; Caglio, S. Phthalocyanine identification in paintings by reflectance spectroscopy. A laboratory and in situ study. Opt. Spectrosc. 2013, 114, 1018–1025. [Google Scholar] [CrossRef]
- Coccato, A.; Bersani, D.; Coudray, A.; Sanyova, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J. Raman Spectrosc. 2016, 47, 1429–1443. [Google Scholar] [CrossRef]
- Zieba-Palus, J.; Was-Gubała, J. An investigation into the use of micro-Raman spectroscopy for the analysis of car paints and single textile fibres. J. Mol. Struct. 2011, 993, 127–133. [Google Scholar] [CrossRef]
- Fremout, W.; Saverwyns, S. Identification of synthetic organic pigments: The role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 2012, 43, 1536–1544. [Google Scholar] [CrossRef]
- Lenoir, J. Organic Pigments. In The Chemistry of Synthetic Dyes; Venkataraman, K., Ed.; Academic Press: New York, NY, USA, 1971; Volume 5, p. 390. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Crouch, S.R. Principles of Instrumental Analysis, 7th ed.; Cengage: Boston, MA, USA, 2018; p. 379. [Google Scholar]
- Hunger, K.; Herbst, W. Pigments, organic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2012; Volume 27, pp. 404–405. [Google Scholar]
- Tate Gallery, London. IOD00298, Pigment Yellow 1. In Infrared and Raman Users Group Spectral Database; Price, B.A.; Pretzel, B.; Lomax, S.Q. (Eds.) Infrared and Raman Users Group: Philadelphia, PA, USA; Available online: www.irug.org (accessed on 31 October 2021).
- Nurhan Becidyan, A. The Chemistry & Physics of Special Effect Pigment & Colorants “What They Are & How They Are Used”; AESA NY-NJ Section Lecture Series; United Mineral & Chemical Corporation: New York, NY, USA, 2014. [Google Scholar]
- Streitel, S.G. Fluorescent pigments (daylight). In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley and Sons: New York, NY, USA, 2009; Volume 15, p. 584. [Google Scholar]
- Boscacci, M.; Francone, S.; Galli, K.; Bruni, S. The brightest colors: A Fourier-transform Raman, surface-enhanced Raman, and thin-layer chromatography-surface-enhanced Raman spectroscopy study of fluorescent artists’ paints. J. Raman Spectrosc. 2020, 51, 1108–1117. [Google Scholar] [CrossRef]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta A 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Silva, C.E.; Silva, L.P.; Edwards, H.G.M.; de Oliveira, L.F.C. Diffuse reflection FTIR spectral database of dyes and pigments. Anal. Bioanal. Chem. 2006, 386, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Caggiani, M.C.; Cosentino, A.; Mangone, A. Pigments Checker version 3.0, a handy set for conservation scientists: A free online Raman spectra database. Microchem. J. 2016, 129, 23–132. [Google Scholar] [CrossRef]
- Thoury, M.; Delaney, J.K. Near-Infrared Luminescence of Cadmium Pigments: In Situ Identification and Mapping in Paintings. Appl. Spectrosc. 2011, 65, 939–951. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Doménech-Carbó, A.; Gimeno-Adelantado, J.V.; Bosch-Reig, F. Identification of synthetic resins used in works of art by Fourier transform infrared spectroscopy. Appl. Spectrosc. 2001, 55, 1590–1602. [Google Scholar] [CrossRef]
- Rodrigues, V.C.; de Cássia Lazzarini Dutra, R.; Faria Diniz, M.; da Costa Mattos, E. Quantificação por NIR/MIR de Resina Poliuretânica em Misturas Binárias com Nitrocelulose Utilizadas em Tintas. Polímeros 2014, 24, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Dredge, P. Sidney Nolan’s adventures in paint—An analytical study of the artist’s use of commercial paints in the 1940s and ’50s. AICCM Bull. 2014, 34, 15–23. [Google Scholar] [CrossRef]
Colour | Area | Raman Bands (cm−1) 1 | IR Bands (cm−1) 1,2 | vis-RS Bands (nm) | Emission Maximum (nm) 1 | Pigment |
---|---|---|---|---|---|---|
The Monster (M) | ||||||
Red | M1 | 985 (BaSO4) | - | 510e, 560–570e, 630s | 610 | cadmium red PR108? |
M12, M13 | - | - | 410s (TiO2), ab. 490e, 550−, 630s | 604 | rhodamine 6G | |
M14 | 793, 982, 1120, 1183, 1214, 1252, 1317, 1332, 1395, 1445, 1496, 1555, 1622 | - | 570e, 640s | 630 | β-naphthol PR3 | |
Orange | M10 | 445, 604 (TiO2), 963, 1044, 1365, 1426, 1493, 1555, 1582 (PR10) | - | 410s (TiO2), 460e, 480+ (weak), 490e, 540−560s | 525 (530, 560 and 582 shoulders) (PY109) | naphthol AS PR10 (or PO38) + isoindole PY109 |
Yellow | M11, M20 | 445, 604 (TiO2) | - | 460e, 480+ (weak), 490e, 530s | 525 (530, 560 and 582 shoulders) (PY109) | isoindole PY109 |
Green | M4, M6 | 667, 747, 770, 1212, 1278, 1336, 1539 | - | 410s (TiO2), ab. 460s, 510–520+, 620de, 650−, 710+, 720− | - | phthalocyanine PG36 |
M16 | 684, 742, 775, 819. 960, 977, 1002, 1083, 1214, 1289, 1343, 1541 | - | 410s (TiO2), ab. 460s, 510–520+, 620de, 650−, 710+, 730− | - | phthalocyanine PG7 | |
Blue | M7 | 440, 605 (TiO2), 677, 745, 950, 1140, 1182, 1338, 1450, 1528 (PB15) | 2093 (PB27) | 410s (TiO2), 460+, ab. 710− | - | phthalocyanine PB15(:1) + Prussian blue PB27 |
M9 | 443, 602 (TiO2), 677, 745, 951, 1140, 1338, 1450, 1528 (PB15) | - | 420s (TiO2), 480+, 580de, 610−, 660−670+, 690−700− | - | phthalocyanine PB15(:1) | |
Violet | M15 | 440, 602 (TiO2), 1262, 1400 (PV5) | - | 420+, 540de, 560+ (weak), 590− | 640 | anthraquinone PV5 |
White | M2 | 440, 602 | - | 380e, 420s (TiO2) | - | titanium white PW6 |
The Daily Neo-Mythology (NQ) | ||||||
Red | NQ1 | 963, 1044, 1365, 1426, 1493, 1555, 1582 | - | ab. 560e, 620s | 600 | naphthol AS PR10 (or PO38) |
NQ12 (red-purple) | 795, 1125, 1179, 1323, 1393, 1444 (PR3) | - | 580e, 640s, 690− (weak) | 630 (610 shoulder, PV19?) | β-naphthol PR3 + violet pigment (PV19?) | |
NQ9 (fuchsia) | - | - | not examined | 612 | PV19? | |
Orange | NQ8 | 789, 945, 997,1135, 1252, 1311, 1484, 1623 (PY1) | 1669, 1602, 1559, 1509, 1450, 1386, 1293, 1271, 1175, 1137, 1120, 1084, 950, 912, 802, 770 (PY1) | ab. 480e, 530e, 600s | 590 (unidentified orange pigment) | arylide PY1 + unidentified orange pigment |
Yellow | NQ7 | 950, 1000, 1137, 1214, 1254, 1312, 1389, 1488, 1536, 1565, 1626 | not available | 480-490e, ab. 550s; 620− (weak), 700+ (weak) | 540 | arylide PY1 |
Green | NQ5 (light green) | 682, 741, 1285, 1340, 1542 (PG7), 1145 (PY3?) | - | 410s/(+) (TiO2), ab. 470s, 530+, 620de, 650−, 710+, 730− | 524 | phthalocyanine PG7 + arylide PY3 |
NQ6 | 684, 742, 775, 819, 977, 1002, 1083, 1214, 1289, 1343, 1541 | - | not examined | - | phthalocyanine PG7 | |
NQ10 (dark green) | 680, 740, 774, 816, 1290, 1539 (PG7), 956, 1145, 1342, 1451, 1530 (PB15) | - | 410s/(+) (TiO2), ab. 460s, 500+, 580de, 610−, 660+, 690− | - | phthalocyanine PG7 + PB15 | |
Blue | NQ2 | see text | 2100 | 410s (TiO2), 460+, 670−710− | - | Prussian blue PB27 |
NQ4 | 677, 746, 1001, 1143, 1343, 1534 | 670 (TiO2) | 420s (TiO2), 490+, 580de, 610−, 670+, 700− | - | phthalocyanine PB15(:1) | |
NQ11 | 548 | 1015, 450 | 450+, 590−, ab. 650e | - | ultramarine blue PB29 | |
Violet | NQ3 | 1262 | - | 410s (TiO2), 430+, 550−, 560+ (weak), 580− | 640 | anthraquinone PV5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longoni, M.; Cicala, N.; Guglielmi, V.; Poldi, G.; Bruni, S. The Art of Everyday Objects: A Non-Invasive In Situ Investigation of Materials and Techniques of Italian Pop Art Paintings on Aluminium. Heritage 2022, 5, 42-60. https://doi.org/10.3390/heritage5010003
Longoni M, Cicala N, Guglielmi V, Poldi G, Bruni S. The Art of Everyday Objects: A Non-Invasive In Situ Investigation of Materials and Techniques of Italian Pop Art Paintings on Aluminium. Heritage. 2022; 5(1):42-60. https://doi.org/10.3390/heritage5010003
Chicago/Turabian StyleLongoni, Margherita, Norma Cicala, Vittoria Guglielmi, Gianluca Poldi, and Silvia Bruni. 2022. "The Art of Everyday Objects: A Non-Invasive In Situ Investigation of Materials and Techniques of Italian Pop Art Paintings on Aluminium" Heritage 5, no. 1: 42-60. https://doi.org/10.3390/heritage5010003
APA StyleLongoni, M., Cicala, N., Guglielmi, V., Poldi, G., & Bruni, S. (2022). The Art of Everyday Objects: A Non-Invasive In Situ Investigation of Materials and Techniques of Italian Pop Art Paintings on Aluminium. Heritage, 5(1), 42-60. https://doi.org/10.3390/heritage5010003