Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review
Abstract
:1. Introduction
2. Pre-Hispanic Chronology of Human Settlements in the Quito Plateau
2.1. Preceramic
2.2. Formative
2.3. Regional Development
2.4. Integration
2.5. Inca
3. Food of the Pre-Hispanic Inhabitants from the Quito Plateau
4. The Presence and Health Implications of Potentially Toxic Substances in the Foods Consumed by the Ancient Inhabitants of Quito
5. Degradation of Biomolecules in Archeological Remains and the Feasibility of Their Preservation
6. Detection of Biomolecules in Archeological Remains
6.1. Qualitative Phase
6.2. Quantitative Phase
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tryon, C.; Pobiner, B.; Kauffman, R. Archaeology and Human Evolution. Evol. Educ. Outreach 2010, 3, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Goffer, Z. Archaeological Chemistry, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 1–623. [Google Scholar]
- Maggio, A. Interdisciplinarity and Archaeology. In Encyclopedia of Global Archaeology; Smith, C., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–7. [Google Scholar]
- Flensborg, G.; Martínez, G.; Tessone, A. Paleodieta en grupos cazadores-recolectores de la transición pampeano-patagónica oriental (Argentina) durante los últimos 6.000 años. Lat. Am. Antiq. 2020, 31, 1–19. [Google Scholar] [CrossRef]
- Pérez, C. El Alimento, un Ser Vivo: Relatos de los Pueblos Andinos de Ecuador Sobre Sabiduría Alimentaria, 1st ed.; UDLA Ediciones: Quito, Ecuador, 2020; ISBN 9789942779229. [Google Scholar]
- Bell, R. Investigaciones Arqueológicas en el Sitio de El Inga, Ecuador; Casa de la Cultura Ecuatoriana: Quito, Ecuador, 1965. [Google Scholar]
- Villalba, M. Cotocollao: Una Aldea Formativa del valle de Quito; Miscelánea Antropológica Ecuatoriana: Quito, Ecuador, 1988; Volume Serie Monográfica 2. [Google Scholar]
- Ugalde, M. Rancho bajo: First evidence of the terminal preceramic in quito. Arqueol. Iberoam. 2019, 42, 14–27. [Google Scholar]
- Ugalde, M.; Dyrdahl, E. Sedentism, Production, and Early Interregional Interaction in the Northern Sierra of Ecuador. In One World Archaeology; Springer: Cham, Switzerland, 2021; pp. 337–371. [Google Scholar]
- Vásquez, J. El Periodo de Desarrollo Regional en Quito; Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 1999. [Google Scholar]
- Cuéllar, A. The Archaeology of Food and Social Inequality in the Andes. J. Archaeol. Res. 2013, 21, 123–174. [Google Scholar] [CrossRef]
- Serrano, S. Etnoarqueología de Intercambio de Bienes y Productos en los Caminos Precolombinos de Pichincha y Napo, Ecuador; ESPOL, FICT: Guayaquil, Ecuador, 2017. [Google Scholar]
- Mesía, C. El periodo formativo en los Andes septentrionales y sus relaciones con los Andes centrales. Arqueol. Soc. 2014, 27, 111–130. [Google Scholar]
- Piperno, D. Phytolith radiocarbon dating in archaeological and paleoecological research: A case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. J. Archaeol. Sci. 2016, 68, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Piperno, D. Identifying crop plants with phytoliths (and starch grains) in Central and South America: A review and an update of the evidence. Quat. Int. 2009, 193, 146–159. [Google Scholar] [CrossRef]
- Stahl, P. Pre-Columbian Andean animal domesticates at the edge of empire. World Archaeol. 2010, 34, 470–483. [Google Scholar] [CrossRef]
- Urban, M.; Barbieri, C. North and South in the ancient Central Andes: Contextualizing the archaeological record with evidence from linguistics and molecular anthropology. J. Anthropol. Archaeol. 2020, 60, 101233. [Google Scholar] [CrossRef]
- Meggers, B. ECUADOR; Thames & Hudson: New York, NY, USA, 1966. [Google Scholar]
- Del Pino, I.; de Terán, L. Algunas Reflexiones Sobre el Ecuador Prehispánico y la Ciudad inca de Quito; Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2005; ISBN 84-8095-422-1. [Google Scholar]
- Nami, H.; Stanford, D. Dating the Peopling of Northwestern South America: An AMS Date from El Inga Site, Highland Ecuador. PaleoAmerica 2016, 2, 60–63. [Google Scholar] [CrossRef]
- Mayer-Oakes, W. El Inga: A Paleo-Indian Site in the Sierra of Northern Ecuador. Trans. Am. Philos. Soc. 1986, 76, 1006466. [Google Scholar] [CrossRef]
- Athens, S.; Ward, J.; Pearsall, D.; Chandler-Ezell, K.; Blinn, D.; Morrison, A. Early Prehistoric Maize in Northern Highland Ecuador. Lat. Am. Antiq. 2016, 27, 3–21. [Google Scholar] [CrossRef]
- Zeidler, J. The Ecuadorian Formative. In The Handbook of South American Archaeology; Springer: New York, NY, USA, 2008; pp. 459–488. [Google Scholar]
- Solorzano, M. Estudio Estadístico de la Necrópolis La Florida (Quito-Ecuador): Cuantificación y Análisis Multivariante de las Sepulturas y el Material Cerámico; Universidad de Granada: Granada, Spain, 2008. [Google Scholar]
- Rostain, S.; Saulieu, G. El Pastaza y el Upano, dos ríos tropicales que conectan los Andes a la Amazonía. Rev. del Mus. La Plata 2019, 4, 353–384. [Google Scholar] [CrossRef] [Green Version]
- Zarrillo, S. Human Adaptation. Food Production. and Cultural Interaction during the Formative Period in Highland Ecuador; University of Calgary: Calgary, AB, Canada, 2012. [Google Scholar]
- Athens, J. Formative Period Occupations in the Highlands of Northern Ecuador: A Comment on Myers. Am. Antiq. 1978, 43, 493–496. [Google Scholar] [CrossRef]
- Valdez, F. Primeras Sociedades de la Alta Amazonia: La Cultura Mayo Chinchipe—Maranon; IRD Editions: Quito, Ecuador, 2003; ISBN 9789942955029. [Google Scholar]
- Porras, P. Nuestro Ayer: Manual de Arqueología Ecuatoriana; Centro de Investigaciones Arqueológicas: Quito, Ecuador, 1980. [Google Scholar]
- Falcón, I. Análisis tecnológico de la obsidiana de Tajamar. Antropol. Cuad. Investig. 2019, 21, 111–130. [Google Scholar]
- Ugalde, M.; Constantine, A.; Chacón, R. Rumipamba. Persistencias y rupturas en el uso del espacio. Reflexiones sobre identidad y áreas de actividad. Antropol. Cuad. Investig. 2009, 8, 105–119. [Google Scholar] [CrossRef]
- Sánchez, F. Análisis Espacial de los Diferentes Momentos Ocupacionales de Rumipamba: Provincia de Pichincha, Canton Quito, Parroquia Altamira; Espol: Guayaquil, Ecuador, 2017. [Google Scholar]
- Figueroa, S. Vista de Complejidad social al final del período formativo tardío. La ceniza de la última erupción del volcán Pululahua (2400 A.P.) como marcador temporal. Antropol. Cuad. Investig. 2017, 18, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, A. Interrelación Hombre-Fauna en el Ecuador Prehispánico; Universidad Complutense de Madrid, Servicio de Publicaciones: Madrid, Spain, 2003. [Google Scholar]
- Buys, J. Investigaciόn Arqueolόgica en la Provincia de Pichincha; Libri Mundi: Quito, Ecuador, 1994; ISBN 9789978570111. [Google Scholar]
- Iturralde, M. Análisis de Patrones de Enterramiento en el Distrito Metropolitano de Quito durante el Periodo de Integración; PUCE: Quito, Ecuador, 2015. [Google Scholar]
- Guillaume-Gentil, N. Cinco Mil años de Historia al Pie de los Volcanes en Ecuador; FLACSO, Sede Ecuador: Abya-Yala, Ecuador, 2013; ISBN 978-9978-67-405-5. [Google Scholar]
- Salomon, F. Los Señores Étnicos de Quito en la Época de los Incas; Instituto Otavaleño de Antropología, Otavalo: Otavalo, Ecuador, 1980. [Google Scholar]
- Molestina, M. El pensamiento simbólico de los habitantes de La Florida (Quito-Ecuador). Bull. l’Institut Français d’études Andin. 2006, 35, 377–395. [Google Scholar] [CrossRef]
- Constantine, A.; Chacon, R.; Ugalde, M.; Mejia, F. Rumipamba bajo la Sombra del Pichincha; FONSAL: Quito, Ecuador, 2009. [Google Scholar]
- Bray, T. Late Pre-Hispanic Chiefdoms of Highland Ecuador. In The Handbook of South American Archaeology; Springer: New York, NY, USA, 2008; pp. 527–543. [Google Scholar]
- Ushiña, E. El Sueño y la Danza Extática. Prácticas Cosmológicas Quitu Cara y su Proceso de Visibilización Desde el Centro Intercultural Pisulí; Facultad Latinoamericana de Ciencias Sociales (FLACSO): Quito, Ecuador, 2020. [Google Scholar]
- Connell, S.; Anderson, A.; Gifford, C.; Gonzalez, A. Inka Militarism at the Pambamarca Complex in Northern Ecuador. Lat. Am. Antiq. 2019, 30, 177–197. [Google Scholar] [CrossRef]
- Foote, N. Reinventing the Inca Past: The Kingdom of Quito, Atahualpa and the Creation of Ecuadorian National Identity. Lat. Am. Caribb. Ethn. Stud. 2010, 5, 109–130. [Google Scholar] [CrossRef]
- Ogburn, D. Reconceiving the Chronology of Inca Imperial Expansion. Radiocarbon 2012, 54, 219–237. [Google Scholar] [CrossRef]
- Fresco, A. Ingañán, la Red Vial del Imperio inca en los Andes Ecuatoriales; Banco Central del Ecuador: Quito, Ecuador, 2004; ISBN 9978723935. [Google Scholar]
- Pagán-Jiménez, J. Almidones: Guía de Material Comparativo Moderno del Ecuador para los Estudios Paleoetnobotánicos en el Neotrópico; Ashpa: Buenos Aires, Argentina, 2015; ISBN 978-987-3851-07-0. [Google Scholar]
- Van der Hammen, T.; Noldus, G.; Salazar, E. Un diagrama de polen del Pleistoceno final y Holoceno de Mullumica. Maguaré 2003, 17, 247–259. [Google Scholar]
- Idrovo, J. El formativo en la Sierra Ecuatoriana. In Formativo en la Sierra Ecuatoriana Jaime Idrovo Urigüen, 3rd ed.; Ledergerber-Crespo, P., Ed.; Abya-Yala: Cuenca, Spain, 2002; pp. 114–123. ISBN 9978411879. [Google Scholar]
- Echeverría, J. Glosario de Arqueología y Temas Afines; INCP: Quito, Ecuador, 2011; Volume Tomo 1. [Google Scholar]
- McEwan, C.; Delgado-Espinoza, F. Late Pre-Hispanic Polities of Coastal Ecuador. In The Handbook of South American Archaeology; Springer: New York, NY, USA, 2008; pp. 505–525. [Google Scholar]
- Lhomme, J.-P.; Vacher, J.-J. La Mitigación de heladas en los camellones del altiplano andino. Bull. l’Institut Français d’études Andin. 2003, 32, 377–399. [Google Scholar] [CrossRef] [Green Version]
- Ubelaker, D.; Katzenberg, M.; Doyon, L. Status and diet in precontact highland ecuador. Am. J. Phys. Anthropol. 1995, 97, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Sykes, N. New directions in the archaeology of medicine: Deep-time approaches to human-animal-environmental care. World Archaeol. 2019, 50, 365–383. [Google Scholar] [CrossRef] [Green Version]
- Delabarde, T. Salud, enfermedad y muerte en la población manteña de Japoto: Las evidencias osteológicas y dentales. Bull. l’Institut Français d’études Andin. 2010, 39, 531–550. [Google Scholar] [CrossRef] [Green Version]
- Ubelaker, D. Health Issues in the Early Formative of Ecuador: Skeletal Biology of Real Alto; Raymond, J.S., Burger, R.L., Eds.; Dumbarton Oaks Research Library and Collection: Washington, DC, USA, 2003. [Google Scholar]
- Ortner, D. Infectious Diseases: Tuberculosis and Leprosy. In Identification of Pathological Conditions in Human Skeletal Remains; Academic Press: New York, NY, USA, 2003; pp. 227–271. ISBN 9780125286282. [Google Scholar]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Morillo, M.; Rojas, J.; Lequart, V.; Lamarti, A.; Martin, P. Natural and Synthetic Derivatives of the Steroidal Glycoalkaloids of Solanum Genus and Biological Activity. Nat. Prod. Chem. Res. 2020, 8, 1–14. [Google Scholar]
- Zarins, R.; Kruma, Z. Glycoalkaloids in potatoes: A review. Foodbal 2017, 2, 7–11. [Google Scholar]
- Romanucci, V.; Pisanti, A.; Di Fabio, G.; Davinelli, S.; Scapagnini, G.; Guaragna, A.; Zarrelli, A. Toxin levels in different variety of potatoes: Alarming contents of α-chaconine. Phytochem. Lett. 2016, 16, 103–107. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Tropane Alkaloids in Food and Feed; Wiley-Blackwell Publishing Ltd.: Parma, Italy, 2013; Volume 11. [Google Scholar]
- Sarabia, O.; Cárdenas-Coronel, W.; Acuña-Jiménez, M.; Sarabia, O.; Cárdenas-Coronel, W.; Acuña-Jiménez, M. Estudio comparativo del contenido de macrominerales, elementos traza y metales pesados en frutos de Carica papaya L. por ICP-OES en el Estado de Colima, México. Rev. Bio Cienc. 2020, 7, e590. [Google Scholar]
- Rai, P.; Lee, S.; Zhang, M.; Tsang, Y.; Kim, K. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; Nebbia, C.S.; Nielsen, E.; et al. Risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato-derived products. EFSA J. 2020, 18, 6222. [Google Scholar]
- Stoessel, L.; Martínez, G.; Constenla, D. Preliminary analysis of fatty acids recovered from archaeological pottery of the lower course of the Colorado River (North-eastern Patagonia): Contributions to the hunter-gatherers subsistence patterns. Magallania 2015, 43, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Bonomo, M.; Colobig, M.; Mazzi, N. Análisis de residuos orgánicos y microfósiles silíceos de la “cuchara” de cerámica del sitio arqueológico Cerro Tapera Vázquez (Parque Nacional Pre-Delta, Argentina). Rev. Mus. Arqueol. Etnol. 2012, 22, 31. [Google Scholar] [CrossRef]
- Hendy, J. Ancient protein analysis in archaeology. Sci. Adv. 2021, 7, 9314–9329. [Google Scholar] [CrossRef]
- Hendy, J.; Warinner, C.; Bouwman, A.; Collins, M.; Fiddyment, S.; Fischer, R.; Hagan, R.; Hofman, C.; Holst, M.; Chaves, E.; et al. Proteomic evidence of dietary sources in ancient dental calculus. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180977. [Google Scholar] [CrossRef]
- Corthals, A.; Koller, A.; Martin, D.; Rieger, R.; Chen, E.; Bernaski, M.; Recagno, G.; Dávalos, L. Detecting the Immune System Response of a 500 Year-Old Inca Mummy. PLoS ONE 2012, 7, e41244. [Google Scholar] [CrossRef]
- Stewart, N.; Gerlach, R.; Gowland, R.; Gron, K.; Montgomery, J. Sex determination of human remains from peptides in tooth enamel. Proc. Natl. Acad. Sci. USA 2017, 114, 13649–13654. [Google Scholar] [CrossRef] [Green Version]
- Copeland, L.; Hardy, K. Archaeological Starch. Agronomy 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Turcotte, M.; Araki, H.; Karp, D.; Poveda, K.; Whitehead, S. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, D. Determinación de Marcadores Químicos Para el Estudio de la Dieta Alimenticia en Recipientes Cerámicos; UCE: Quito, Ecuador, 2020. [Google Scholar]
- Gutiérrez, G.; Becerril, M.; Ortiz, R. Prácticas de Bioquímica, 13th ed.; Universidad Nacional Autónoma de México: Distrito Federal, Mexio, 2002; ISBN 9786070280511. [Google Scholar]
- Flores, E.; Alcántara, L.; Maldonado, R. Control de Calidad de las Plantas Medicinales de la Farmacia Natural del CAMEC—Hospital III Chimbote. Rev. Peru. Med. Integr. 2021, 5, 68–79. [Google Scholar]
- Buckley, M.; Melton, N.; Montgomery, J. Proteomics analysis of ancient food vessel stitching reveals >4000-year-old milk protein. Rapid Commun. Mass Spectrom. 2013, 27, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Mitsutake, H.; Poppi, R.; Breitkreitz, M. Raman Imaging Spectroscopy: History, Fundamentals and Current Scenario of the Technique. J. Braz. Chem. Soc. 2019, 30, 2243–2258. [Google Scholar] [CrossRef]
- Arturo, L. Estudio Químico de los Alcaloides Presentes en las Hojas de Yerbamora (Solanum nigrum L.), Originaria de los Municipios de Pasto y Chachagüí; Universidad de Nariño: San Juan de Pasto, Colombia, 2017. [Google Scholar]
- Gutierrez-Poveda, E. Deteccion de Alcaloides Tropanicos en Alimentos Mediante Cromatografia de Liquidos/Espectrometria de Masas en Tandem; Universidad de Jaén: Jaén, Spain, 2019. [Google Scholar]
- Gallegos, S.; Martínez, Y.; Serna-Muñoz, C.; Pérez-Silva, A.; Aparecido, J.; Ortiz, A. Concentración de flúor y metales pesados en aguas embotelladas: Medidas barrera frente a caries dental y fluorosis. Rev. Esp. Salud Publica 2020, 93, 1–12. [Google Scholar]
- Jarapala, S.; Kandlakunta, B.; Thingnganing, L. Evaluation of trace metal content by ICP-MS using closed vessel microwave digestion in fresh water fish. J. Environ. Public Health 2014, 2014, 201506. [Google Scholar] [CrossRef]
Period | Years | Main Sites | Possible Main Foods in the Diet | Reference |
---|---|---|---|---|
Preceramic: Early Medium Late | 11,000–1500 BC | El Inga Rancho Bajo | Hunter–gatherers (wildlife and wild flora) Corn, melloco, mashua, beans, chili, amaranth, quinoa, and pumpkins. | [6,8,9,11,20,21,22,47,48] |
Formative: Early Late | 1500–500 BC | Rancho Bajo Cotocollao Tajamar Rumipamba Tababela Toctiuco | Corn, beans, áchira, quinoa, potato, and oca. Eggs and snails. Chili and salt (obtained from exchange). Llama, guinea pig, deer, guanta, puma, rabbit, weasels, turtles, several types of birds and reptiles, opossum, moor wolf, mouse, and turtledove. | [7,8,9,24,30,31,32,33,34,49] |
Regional Development | 500 BC–500 AD | Jardin del Este (Cumbayá) | Corn, broad bean, potato, and beans. Coca leaf. Llama, guinea pig, rabbit, deer, dog, various birds, guanta, skunk, and camelids of different species, mainly llamas. | [10,12,16,24,32,35,36,50] |
Integration | 500–1500 AD | Quitu territory: Rumipamba La Florida Chillogallo Chilibulo Tajamar Chaupicruz Rumicucho | Corn, broad bean, squash, pumpkins, capulí, myrtle, potato, melloco, oca, mashua, cassava (acquired from other regions and apparently in the form of a drink), and chili. Eggs Coca leaf Guinea pig, llama, deer, creole duck, Muscovy duck, rabbit, fish, ducks, herons, and other birds. | [12,16,19,30,31,32,34,38,39,40,42,53] |
Inca | 1500–1534 A D | Quito (today’s historic center and urban area: San Francisco and Itchimbia) Rumicucho Toctiuco Guayllabamba | Corn (as the main food of the diet and as a sacred drink, the chicha). In the Andes, they were accustomed to consuming the crops of the local populations. Llama, guinea pig, dog, and alpaca. | [11,12,19,31,32,34,43] |
Test | Molecule | Method | Analysis | Reference |
---|---|---|---|---|
Qualitative | Carbohydrates | Detection using Thymol | Reddish color indicates the presence of the molecule. | [74] |
Lipids | Detection using Sudan III | Red to orange color indicates the presence of the molecule | [74] | |
Peptides/proteins | Detection using Biuret | Violet color indicates the presence of the molecule | [74] | |
Amino acids | Detection using Ninhydrin | The blue–green color indicates the presence of the molecule | [75]. | |
Alkaloids | Dragendorff test | Opalescence, turbidity, or copious precipitate indicates the presence of the molecule | [76] | |
Quantitative | Carbohydrates/starch | Optical microscopy (using bright field, as well as polarized light) | A photographic record is taken with a digital camera. The sample is compared with a specific guide of wild species starches. | [47] |
Lipids/fatty acids | Gas chromatography with flame ionization detector (GC/FID) | Chromatograms indicate which type of fatty acid is present | [74] | |
Proteins | Liquid chromatography with tandem mass spectrometry (LC-MS-MS). | The sample is compared with global open-access databases | [77]. | |
Carbohydrates/lipids/proteins | Infrared spectroscopy (IR) and Raman | Spectra are assigned to the different food components according to the information available in databases, the literature, and calculations derived from quantum chemistry | [78] | |
Glycoalkaloids (α-solanine and α-chaconine), | Liquid chromatography with tandem mass spectrometry (LC-MS-MS). | Mass spectra are analyzed by a comparison with specialized databases | [79] | |
Tropane alkaloids | High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) | Mass spectra are analyzed by a comparison with specialized databases | [80] | |
Toxic elements (heavy metals) | Inductively coupled plasma mass spectrometry (ICP-MS) | Detection and quantification of the presence of toxic and essential elements according to calibration curves made with standard solutions of heavy metals | [81,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordoñez-Araque, R.; Ruales, J.; Vargas-Jentzsch, P.; Ramos-Guerrero, L.; Romero-Bastidas, M.; Montalvo-Puente, C.; Serrano-Ayala, S. Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage 2022, 5, 3446-3462. https://doi.org/10.3390/heritage5040177
Ordoñez-Araque R, Ruales J, Vargas-Jentzsch P, Ramos-Guerrero L, Romero-Bastidas M, Montalvo-Puente C, Serrano-Ayala S. Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage. 2022; 5(4):3446-3462. https://doi.org/10.3390/heritage5040177
Chicago/Turabian StyleOrdoñez-Araque, Roberto, Jenny Ruales, Paul Vargas-Jentzsch, Luis Ramos-Guerrero, Martha Romero-Bastidas, Carlos Montalvo-Puente, and Sthefano Serrano-Ayala. 2022. "Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review" Heritage 5, no. 4: 3446-3462. https://doi.org/10.3390/heritage5040177
APA StyleOrdoñez-Araque, R., Ruales, J., Vargas-Jentzsch, P., Ramos-Guerrero, L., Romero-Bastidas, M., Montalvo-Puente, C., & Serrano-Ayala, S. (2022). Pre-Hispanic Periods and Diet Analysis of the Inhabitants of the Quito Plateau (Ecuador): A Review. Heritage, 5(4), 3446-3462. https://doi.org/10.3390/heritage5040177