Mural Painting Discovered in the Crypt of the Cathedral of Parma (Italy): Multi-Technique Investigations for the Conservative Restoration Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Micro-Raman Spectroscopy
2.3. Scanning Electron Microscopy Coupled with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS)
2.4. Fourier Transform Infrared Spectroscopy (FT–IR)
2.5. Gas Chromatography-Mass Spectrometry (GC/MS)
3. Results and Discussion
3.1. Identification of Pigments
3.1.1. Raman Spectroscopy
3.1.2. Scanning Electron Microscopy Coupled with Energy-Dispersive X-Ray Spectroscopy (SEM-EDS)
3.2. Characterization of Organic Materials
3.2.1. Fourier Transform Infrared Spectroscopy (FT–IR)
3.2.2. Gas Chromatography–Mass Spectrometry (GC/MS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertini, G. Center and Periphery: Art Patronage in Renaissance Piacenza and Parma. In The Court Cities of Northern Italy: Milan, Parma, Piacenza, Mantua, Ferrara, Bologna, Urbino, Pesaro, and Rimini; Artistic Centers of the Italian Renaissance: New York, NY, USA, 2010; pp. 71–137. [Google Scholar]
- Bersani, D.; Berzioli, M.; Caglio, S.; Casoli, A.; Lottici, P.P.; Medeghini, L.; Poldi, G.; Zannini, P. An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem. J. 2014, 114, 80–88. [Google Scholar] [CrossRef]
- Casoli, A.; Lottici, P.P.; Bersani, D. A Study on Correggio Wall Paintings: Characterization of Technique and Materials of Abbey Church of S. Giovanni Evangelista in Parma, Italy. Appl. Sci. 2022, 12, 4810. [Google Scholar] [CrossRef]
- Bergamonti, L.; Graiff, C.; Simeti, S.; Casoli, A. The 20th Century Wall Paintings in the Chapel of the Fallen in Parma Cathedral (Italy): Scientific Investigations for a Correct Conservation Project. Appl. Sci. 2023, 13, 7235. [Google Scholar] [CrossRef]
- Casoli, A.; Santoro, S. Organic materials in the wall paintings in Pompei: A case study of Insuladel Centenario. BMC Chem. 2012, 6, 107. [Google Scholar] [CrossRef]
- Bergamonti, L.; Cirlini, M.; Graiff, C.; Lottici, P.P.; Palla, G.; Casoli, A. Characterization of waxes in the Roman wall paintings of the Herculaneum site (Italy). Appl. Sci. 2022, 12, 11264. [Google Scholar] [CrossRef]
- Gilbert, B.; Denoël, S.; Weber, G.; Allart, D. Analysis of green copper pigments in illuminated manuscripts by micro-Raman spectroscopy. Analyst 2003, 128, 1213–1217. [Google Scholar] [CrossRef]
- Bertolotti, G.; Bersani, D.; Lottici, P.P.; Alesiani, M.; Malcherek, T.; Schlüter, J. Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Anal. Bioanal. Chem. 2011, 402, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Burgio, L.; Clark, R.J.H. Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 1491–1521. [Google Scholar] [CrossRef]
- Bersani, D.; Antonioli, G.; Lottici, P.P.; Casoli, A. Raman microspectrometric investigation of wall paintings in S. Giovanni Evangelista Abbey in Parma: A comparison between two artists of the 16th century. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Lambert, K.; Matthys, S.; Schudel, W.; Bergmans, A.; Moens, L. In situ analysis of mediaeval wall paintings: A challenge for mobile Raman spectroscopy. Anal. Bioanal. Chem. 2005, 383, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Ospitali, F.; Bersani, D.; Di Lonardo, G.; Lottici, P.P. ‘Green earths’: Vibrational and elemental characterization of glauconites, celadonites and historical pigments. J. Raman Spectrosc. 2008, 39, 1066–1073. [Google Scholar] [CrossRef]
- Hradil, D.; Hradilová, J.; Bezdička, P.; Švarcová, S.; Čermáková, Z.; Košařová, V.; Němec, I. Crocoite PbCrO4 and mimetite Pb5(AsO4)3Cl: Rare minerals in highly degraded mediaeval murals in Northern Bohemia. J. Raman Spectrosc. 2014, 45, 848–858. [Google Scholar] [CrossRef]
- Mugnaini, S.; Bagnoli, A.; Bensi, P.; Droghini, F.; Scala, A.; Guasparri, G. Thirteenth century wall paintings under the Siena Cathedral (Italy). Mineralogical and petrographic study of materials, painting techniques and state of conservation. J. Cult. Herit. 2006, 7, 171–185. [Google Scholar] [CrossRef]
- Sandu, I.C.A.; Afonso, L.U.; Murta, E.; De Sa, M.H. Gilding Techniques in Religious Art Between East and West, 14th–18th Centuries. Int. J. Conserv. Sci. 2010, 1, 47–62. [Google Scholar]
- Edwards, H.G.M.; Farwell, D.W.; Newton, E.M.; Perez, F.R.; Villar, S.J. Raman spectroscopic studies of a 13th century polychrome statue: Identification of a “forgotten” pigment. J. Raman Spectrosc. 2000, 31, 407–413. [Google Scholar] [CrossRef]
- Lluveras, A.; Boularand, S.; Andreotti, A.; Vendrell-Saz, M. Degradation of azurite in mural paintings: Distribution of copper carbonate, chlorides and oxalates by SRFTIR. Appl. Phys. A 2010, 99, 363–375. [Google Scholar] [CrossRef]
- Gil, M.; Serrão, V.; Carvalho, M.L.; Longelin, S.; Dias, L.; Cardoso, A.; Caldeira, A.T.; Rosado, T.; Mirão, J.; Candeias, A.E. Material and diagnostic characterization of 17th century mural paintings by spectra-colorimetry and SEM-EDS: An insight look at José de Escovar Workshop at the CONVENT of Na Sra da Saudação (Southern Portugal). Color Res. Appl. 2013, 39, 288–306. [Google Scholar] [CrossRef]
- Zhou, Z.; Shen, L.; Li, C.; Wang, N.; Chen, X.; Yang, J.; Zhang, H. Investigation of gilding materials and techniques in wall paintings of Kizil Grottoes. Microchem. J. 2020, 154, 104548. [Google Scholar] [CrossRef]
- Cavallo, G.; Verda, M. Gilding on wall paintings from a period: Between the 14th–16th centuries AD in the Lombard lake region. ArcheoSciences 2009, 33, 410–415. [Google Scholar] [CrossRef]
- Sandu, I.C.A.; de Sá, M.H.; Pereira, M.C. Ancient ‘gilded’ art objects from European cultural heritage: A review on different scales of characterization. Surf. Interface Anal. 2011, 43, 1134–1151. [Google Scholar] [CrossRef]
- Lalli, C.G.; Innocenti, F. La doratura nelle tecniche artistiche. OPD Restauro 2016, 28, 340–348. [Google Scholar]
- O’Shea, M.J.; Vigliaturo, R.; Choi, J.K.; McKeon, T.P.; Krekeler, M.P.; Gieré, R. Alteration of yellow traffic paint in simulated environmental and biological fluids. Sci. Total Environ. 2021, 750, 141202. [Google Scholar] [CrossRef]
- Daniilia, S.; Minopoulou, E. A study of smalt and red lead discolouration in Antiphonitis wall paintings in Cyprus. Appl. Phys. A 2009, 96, 701–711. [Google Scholar] [CrossRef]
- Gil, M.; Carvalho, M.L.; Longelin, S.; Ribeiro, I.; Valadas, S.; Mirão, J.; Candeias, A.E. Blue Pigment colors from wall painting churches in Danger (Portugal 15th to 18th century): Identification, diagnosis, and color evaluation. Appl. Spectrosc. 2011, 65, 782–789. [Google Scholar] [CrossRef]
- Mazzocchin, G.; Agnoli, F.; Mazzocchin, S.; Colpo, I. Analysis of pigments from Roman wall paintings found in Vicenza. Talanta 2003, 61, 565–572. [Google Scholar] [CrossRef]
- Valadas, S.; Candeias, A.; Mirão, J.; Tavares, D.; Coroado, J.; Simon, R.; Silva, A.; Gil, M.; Guilherme, A.; Carvalho, M. Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEM-EDS—The case of the frescoes from Misericordia Church of Odemira. Microsc. Microanal. J. 2011, 17, 702–709. [Google Scholar] [CrossRef]
- Barilaro, D.; Crupi, V.; Majolino, D.; Barone, G.; Ponterio, R. A detailed spectroscopic study of an Italian fresco. J. Appl. Phys. 2005, 97, 044907. [Google Scholar] [CrossRef]
- Anastasiou, M.; Hasapis, T.; Zorba, T.; Pavlidou, E.; Chrissafis, K.; Paraskevopoulos, K.M. TG-DTA and FTIR analyses of plasters from byzantine monuments in Balkan region: Comparative study. J. Therm. Anal. Calorim. 2006, 84, 27–32. [Google Scholar] [CrossRef]
- Aattache, A.; Mahi, A.; Soltani, R.; Mouli, M.; Benosman, A.S. Experimental study on thermo-mechanical properties of polymer modified mortar. Mater. Des. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Al Sekhaneh, W.; Shiyyab, A.; Arinat, M.; Gharaibeh, N. Use of FTIR and thermogravimetric analysis of ancient mortar from The Church of the Cross in Gerasa (Jordan) for conservation purposes. Mediterr. Archaeol. Archaeom. 2020, 20, 159–174. [Google Scholar] [CrossRef]
- Maia, M.; Barros, A.I.; Nunes, F.M. A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta 2013, 107, 74–80. [Google Scholar] [CrossRef]
- Bucio, A.; Moreno-Tovar, R.; Bucio, L.; Espinosa-Dávila, J.; Anguebes-Franceschi, F. Characterization of beeswax, candelilla wax and paraffin wax for coating cheeses. Coatings 2021, 11, 261. [Google Scholar] [CrossRef]
- Meiklejohn, R.A.; Meyer, R.J.; Aronovic, S.M.; Schuette, H.A.; Meloche, V.W. Characterization of long-chain fatty acids by infrared spectroscopy. Anal. Chem. 1957, 29, 329–334. [Google Scholar] [CrossRef]
- Stamboliyska, B.; Tapanov, S.; Velcheva, E.; Yancheva, D.; Rogozherov, M.; Glavcheva, Z.; Lalev, G.; Dimitrov, M. The altar wall paintings of the catholicon “The Nativity of the Virgin”, Rila Monastery, Bulgaria: Identification of the painting materials by means of vibrational spectroscopic techniques complemented by EDX, XRD and TGA analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119087. [Google Scholar] [CrossRef] [PubMed]
- Peris-Vicente, J.; Adelantado, J.G.; Carbó, M.D.; Castro, R.M.; Reig, F.B. Characterization of waxes used in pictorial artworks according to their relative amount of fatty acids and hydrocarbons by gas chromatography. J. Chromatogr. A 2006, 1101, 254–260. [Google Scholar] [CrossRef]
- Asperger, A.; Engewald, W.; Fabian, G. Analytical characterization of natural waxes employing pyrolysis–gas chromatography–mass spectrometry. J. Anal. Appl. Pyrolysis 1999, 50, 103–115. [Google Scholar] [CrossRef]
- Regert, M.; Langlois, J.; Colinart, S. Characterisation of wax works of art by gas chromatographic procedures. J. Chromatogr. A 2005, 1091, 124–136. [Google Scholar] [CrossRef]
- Lanterna, G.; Mairani, A.; Matteini, M.; Rizzi, M.; Vigato, P.A. Characterisation of Decay Markers on Pictorial Models Simulating Ancient Polychromies: Target 2.2.2 of the Special Project on Cultural Heritage—CNR—Italy. In Proceedings of the 2nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris, France, 5–9 July 1999; Elsevier: Paris, France; pp. 487–489. [Google Scholar]
- Casoli, A.; Montanari, A.; Palla, L. Painted models simulating ancient polychromies: A statistical analysis of chemical results. In Proceedings of the 3rd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris, France, 9–14 July 2001; pp. 839–845. [Google Scholar]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant. J. Anal. Chem. 2005, 60, 994–996. [Google Scholar]
- Blaško, J.; Kubinec, R.; Husová, B.; Přikryl, P.; Pacáková, V.; Štulík, K.; Hradilová, J. Gas chromatography/mass spectrometry of oils and oil binders in paintings. J. Sep. Sci. 2008, 31, 1067–1073. [Google Scholar] [CrossRef]
- Manzano, E.; Rodriguez-Simón, L.; Navas, N.; Checa-Moreno, R.; Romero-Gámez, M.; Capitan-Vallvey, L. Study of the GC–MS determination of the palmitic–stearic acid ratio for the characterisation of drying oil in painting: La Encarnación by Alonso Cano as a case study. Talanta 2011, 84, 1148–1154. [Google Scholar] [CrossRef]
Sample Name | Description |
---|---|
4CRI * | Mantle of the Madonna |
5CRI * | Black with plaster, from the gap in the foot of St. Joachim |
6CRI * | Gray with plaster, from the foot gap |
7CRI * | Mantle of the Madonna |
8CRI * | Brown with plaster, from the gap of the monochrome arch |
9CRI* | Dark red with plaster, from a gap in the mantle of St. John |
10CRI * | Green-brown, with plaster, as a boundary between the complexion-veil of the Madonna’s neck |
11CRI * | Green-brown, with plaster, between the complexion-veil of the Madonna’s neck |
12CRI * | Traces of gold on blue, from falling gilded filets from the lower mantle of the Madonna |
14CRI * | Brown, from the underarch |
15CRI * | Orange-red, from a gap in the robe in the lower yellow folds S. Joachim |
17CRI | Brownish yellow material, on throne decoration |
18CRI | Saline efflorescence, under the right foot of St. John |
19CRI | Saline efflorescence, area below the brick near electrical panel |
20CRI | Organic material, on decoration of the base of the throne |
21CRI | Orange-yellow, flap of St. Peter’s robe, on the left leg |
22CRI | Dark blue-greenish, robe of the Virgin Mary as a child. |
23CRI | Dark red, priest’s robe |
24CRI | Brown, under the arch on the right side |
25CRI | Grayish blue, upper left part of the sky |
26CRI | Red, robe of the arm of St. John |
27CRI | Green-blue, landscape to the left of St. John |
28CRI | Blue, lower part of St. Peter’s robe |
29CRI | Green-blue mantle of the Virgin Mary, left knee |
30CRI | Green-blue mantle of the Virgin Mary, left knee |
31CRI | Red, step between the mantle of the Virgin and the frame |
32CRI | Yellow, left underarch |
33CRI | Dark blue, lower right part of the Virgin Mary’s cloak |
34CRI | Brown, gap in the wall, to the right of St. Anne. |
35CRI | Blue, sky upper left part. |
40CRI | Monochrome background below the base of the throne. Brownish gray, with an opalescent appearance |
43CRI | Purplish red dress of the Madonna, lower part |
44CRI | Gap in the orange fold of S. Joachim’s lower robe |
45CRI | Gap in the yellow fold of S. Joachim’s lower robe |
46CRI | Gap in the High Priest’s Mantle |
Assignment No. | RT (min) | Analyte | Fragment (m/z) | |
---|---|---|---|---|
IS | 16.37 | C20 STD | Hydrocarbons | 282 |
1 | 17.04 | C16 | Acid | 328, 313 |
2 | 19.47 | C18 | Alcohol | 327 |
3 | 20.38 | C18:1 | Acid | 339, 354 |
4 | 20.72 | C18 | Acid | 341, 356 |
5 | 22.37 | C20 | Acid | 369, 384 |
6 | 22.75 | C25 | Hydrocarbons | 352 |
7 | 23.01 | C22 | Alcohol | 383 |
8 | 23.31 | C26 | Hydrocarbons | 366 |
9 | 23.52 | C22 | Acid | 397, 412 |
10 | 23.91 | C27 | Hydrocarbons | 380 |
11 | 24.20 | C24 | Alcohol | 411, 75 |
12 | 24.84 | C24 | Acid | 425, 440 |
13 | 25.38 | C29 | Hydrocarbons | 408 |
14 | 25.75 | C26 | Alcohol | 439 |
15 | 27.50 | C31 | Hydrocarbons | 436 |
16 | 28.02 | C28 | Alcohol | 467 |
17 | 31.53 | C30 | Alcohol | 495 |
18 | 36.96 | C32 | Alcohol | 523 |
Sample Name | FT–IR Spectroscopy | Raman Spectroscopy | SEM–EDS | GC/MS |
---|---|---|---|---|
4CRI | Calcium carbonate, beeswax, silicate | Indigo, azurite, malachite, calcite, quartz, hematite | Azurite | Egg |
5CRI | Calcium carbonate, Silicate | Calcite, carbon black, azurite, clinoatacamite | ||
6CRI | Calcium carbonate, silicate | Calcite, quartz, sulfate (prob. baryte) | ||
7CRI | Calcium carbonate, beeswax, silicate | Azurite, indigo, malachite, organic material (prob. wax), carbon black | Beeswax | |
8CRI | Calcium carbonate, silicate | Calcite, azurite | ||
9CRI | Calcium carbonate, silicate | Hematite, calcite, quartz, white lead, anatase | ||
10CRI | Calcium carbonate, silicate | Green earth, calcite, white lead (or nitrate), sulfate (prob. baryte), Uk-1 | ||
11CRI | Calcium carbonate, silicate, beeswax | Malachite, azurite, Cu-sulphate (brochantite) | ||
12CRI | Calcium carbonate, silicate, beeswax | Gold (no Raman), SnO, azurite, sulfate (prob. baryte) | SnO, Au | Egg |
14CRI | Calcium carbonate, silicate, hematite | Hematite, calcite, goethite | ||
15CRI | Calcium carbonate, silicate, beeswax | Cinnabar, crocoite (chrome yellow), gypsum | Crocoite | Egg |
17CRI | Beeswax | Wax | Beeswax | |
18CRI | Calcium carbonate, calcium sulfate | Gypsum | ||
19CRI | Calcium carbonate, calcium sulfate | Gypsum, carbon | ||
20CRI | Calcium carbonate, silicate, beeswax | Cinnabar, SnO, gold (no Raman) | ||
21CRI | Calcium carbonate, silicate, hematite | Goethite, carbon black, anatase, calcite | ||
22CRI | Calcium carbonate, silicate | Azurite, clinoatacamite, hematite, calcite | ||
23CRI | Calcium carbonate, silicate, hematite | Uk-1, hematite | ||
24CRI | Calcium carbonate, silicate, hematite | Hematite, calcite | ||
25CRI | Calcite, smalt, sulfate (brochantite), Uk-1 | Smalt | ||
26CRI | Calcium carbonate, silicate, hematite | Cinnabar, hematite, calcite | ||
27CRI | Azurite, smalt | |||
28CRI | Calcium carbonate, silicate | Azurite, clinoatacamite, anatase | ||
29CRI | Calcium carbonate, silicate | Clinoatacamite, indigo, azurite, baryte, quartz | ||
30CRI | Azurite, clinoatacamite baryte, malachite | |||
31CRI | Calcium carbonate, silicate | Hematite, carbon black, calcite, white lead, azurite, Uk-1 | ||
32CRI | Goethite, calcite | |||
33CRI | Egg | |||
34CRI | Egg | |||
35CRI | Egg | |||
40CRI | Beeswax | Beeswax | ||
43CRI | Cinnabar, calcite, sulfur, SnS2 (mosaic gold) | |||
44CRI | Calcium carbonate, silicate, hematite | Hematite, calcite, cinnabar | Hematite | |
45CRI | Calcium carbonate, silicate | Crocoite, gypsum, calcite | Crocoite | |
46CRI | Calcium carbonate, silicate, hematite | Hematite, Uk-1 | Hematite |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potenza, M.; Bergamonti, L.; Graiff, C.; Bersani, D.; Fornasini, L.; Simeti, S.; Casoli, A. Mural Painting Discovered in the Crypt of the Cathedral of Parma (Italy): Multi-Technique Investigations for the Conservative Restoration Project. Heritage 2025, 8, 87. https://doi.org/10.3390/heritage8030087
Potenza M, Bergamonti L, Graiff C, Bersani D, Fornasini L, Simeti S, Casoli A. Mural Painting Discovered in the Crypt of the Cathedral of Parma (Italy): Multi-Technique Investigations for the Conservative Restoration Project. Heritage. 2025; 8(3):87. https://doi.org/10.3390/heritage8030087
Chicago/Turabian StylePotenza, Marianna, Laura Bergamonti, Claudia Graiff, Danilo Bersani, Laura Fornasini, Silvia Simeti, and Antonella Casoli. 2025. "Mural Painting Discovered in the Crypt of the Cathedral of Parma (Italy): Multi-Technique Investigations for the Conservative Restoration Project" Heritage 8, no. 3: 87. https://doi.org/10.3390/heritage8030087
APA StylePotenza, M., Bergamonti, L., Graiff, C., Bersani, D., Fornasini, L., Simeti, S., & Casoli, A. (2025). Mural Painting Discovered in the Crypt of the Cathedral of Parma (Italy): Multi-Technique Investigations for the Conservative Restoration Project. Heritage, 8(3), 87. https://doi.org/10.3390/heritage8030087