Feedback-Driven Plasmonic-Thermal Route to Femtosecond-Laser-Induced Periodic Surface Structures in Silicon Indicated by Pump-Probe Scattering and Diffraction
Abstract
:1. Introduction
2. Experimental Techniques
3. Material Properties
3.1. Crystalline Silicon
3.2. Amorphous Silicon
4. Spatial Frequencies and Plasmon Coupling
5. Results and Discussion
5.1. Dynamic Initial Feedback Mechanism
5.1.1. Micro-craters
5.1.2. Distance Function and Angular Characteristics
5.2. Pump-Probe Scattering and Diffraction
5.2.1. Measuring Conditions
5.2.2. Initial Pulse (N = 1)
5.2.3. Pulse Number N = 2
5.2.4. Pulse Number N = 3
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Pump-Probe Scattering and Diffraction for N = 1
Appendix B. Pump-Probe Scattering and Diffraction for N = 2
Appendix C. Pump-Probe Scattering and Diffraction for N = 3
References
- Birnbaum, M. Semiconductor surface damage produced by Ruby lasers. J. Appl. Phys. 1965, 36, 3688–3689. [Google Scholar] [CrossRef]
- Messaoudi, H.; Das, S.K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R. Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules. In Progress in Nonlinear Nano-Optics; Sakabe, M., Lienau, C., Grunwald, R., Eds.; Springer: Berlin, Germany, 2015; pp. 207–219. [Google Scholar]
- Lübcke, A.; Andreev, A.A.; Höhm, S.; Grunwald, R.; Ehrentraut, L.; Schnürer, M. Prospects of target nanostructuring for laser proton acceleration. Sci. Rep. 2017, 7, 44030. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 2018, 10, 9427–9440. [Google Scholar] [CrossRef]
- Khan, M.E.; Han, T.H.; Khan, M.M.; Karim, M.R.; Cho, M.H. Environmentally Sustainable Fabrication of Ag@g-C3N4 Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS Appl. Nano Mater. 2018, 1, 2912–2922. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Sipe, J.E.; Young, J.F.; Preston, J.S.; van Driel, H.M. Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 1983, 27, 1141–1154. [Google Scholar] [CrossRef]
- Young, J.F.; Preston, J.S.; van Driel, H.M.; Sipe, J.E. Laser-induced periodic surface structure. II Experiments on Ge, Si, Al, and brass. Phys. Rev. B 1983, 27, 1155–1172. [Google Scholar] [CrossRef]
- Young, J.F.; Sipe, J.E.; Driel, H.M. Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium. Phys. Rev. B 1984, 30, 2001–2015. [Google Scholar] [CrossRef]
- Brueck, S.R.; Ehrlich, D.J. Simulated surface plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal films. Phys. Rev. Lett. 1982, 48, 1678–1681. [Google Scholar] [CrossRef]
- Kaplan, A.E.; Miyazaki, K. Laser-induced surface nano-ripples as manifestation of Wigner excitons. In Proceedings of the Quantum Electronics and Laser Science Conference (QELS), Baltimore, MD, USA, 6–11 May 2007. [Google Scholar]
- Tsibidis, G.D.; Fotakis, C.; Stratakis, E. From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembles structures. Phys. Rev. B 2015, 92, 041405(R). [Google Scholar] [CrossRef]
- Costache, F.; Eckert, S.; Reif, J. On ultra-short laser pulse induced instabilities at the surface of non-metallic solids. Proc. SPIE 2006, 6261, 626107. [Google Scholar]
- Varlamova, O. Self-Organized Surface Patterns Originating from Femtosecond Laser-Induced Instability. Ph.D. Thesis, Technical University, Cottbus, Germany, November 2013. [Google Scholar]
- Reif, J.; Costache, F.; Henyk, M.; Pandelov, S.V. Ripples revisited: Non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 2002, 197–198, 891–895. [Google Scholar] [CrossRef]
- Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Z.; Marti, O. The role of original surface roughness in laser-induced periodic surface structure formation process on polycarbonate films. Thin Solid Films 2004, 453–454, 114–120. [Google Scholar] [CrossRef]
- Obara, G.; Maeda, N.; Miyanishi, T.; Terakawa, M.; Nedyalkov, N.N.; Obara, M. Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates. Opt. Express 2011, 19, 19093–19103. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Makarov, S.V.; Ionin, A.A.; Nathala, C.S.R.; Ajami, A.; Ganz, T.; Assion, A.; Husinsky, W. Dynamic polarization flip in nanoripples on photoexcited Ti surface near its surface plasmon resonance. Opt. Lett. 2015, 40, 4967–4970. [Google Scholar] [CrossRef]
- Dufft, D.; Rosenfeld, A.; Das, S.K.; Grunwald, R.; Bonse, J. Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO. J. Appl. Phys. 2009, 105, 034908. [Google Scholar] [CrossRef]
- Lübcke, A.; Schnürer, M.; Ehrentraut, L.; McGlynn, E.; Byrne, D.; Lowry, S.; Wehner, R.; Grunwald, R. Interaction of ultrafast laser pulses with nanostructure surfaces. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; Volume 2, pp. 420–432. [Google Scholar]
- Bonse, J.; Rosenfeld, A.; Krüger, J. Femtosecond laser-induced periodic surface structures: Recent approaches to explain, their sub-wavelength periodicities. Proc. SPIE 2012, 7994, 79940M-7. [Google Scholar]
- Van Driel, H.M.; Dworschak, K. Locking of optical and thermodynamical length scales in laser-induced melt-solid patterns on silicon. Phys. Rev. Lett. 1992, 69, 3487–3490. [Google Scholar] [CrossRef]
- Jia, T.Q.; Chen, H.X.; Huang, M.; Zhao, F.L.; Qiu, J.R.; Li, R.X.; Xu, Z.Z.; He, X.K.; Zhang, J.; Kuroda, H. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys. Rev. B 2005, 72, 125429. [Google Scholar] [CrossRef]
- Wagner, R.; Gottmann, J.; Horn, A.; Kreutz, E.W. Subwavelength ripple formation induced by tightly focused femtosecond laser radiation. Appl. Surf. Sci. 2006, 252, 8576–8579. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Malzer, S.; Wang, L.J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses. Opt. Lett. 2007, 32, 1932–1934. [Google Scholar] [CrossRef]
- Ganeev, R.A. Formation of different periodic nanostructures on semiconductors. Opt. Spectrosc. 2009, 106, 142–146. [Google Scholar] [CrossRef]
- LeHarzig, R.; Schuck, H.; Sauer, D.; Anhut, T.; Riemann, I.; König, K. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express 2005, 13, 6651–6656. [Google Scholar] [CrossRef]
- Das, S.K.; Messaoudi, H.; Debroy, A.; McGlynn, E.; Grunwald, R. Multiphoton excitation of surface plasmon-polaritons and scaling of nanoripple formation in large bandgap materials. Opt. Mater. Express 2013, 3, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Dufft, D.; Rosenfeld, A.; Bonse, J.; Bock, M.; Grunwald, R. Femtosecond-laser-induced quasiperiodic nanostructures on TiO2 surfaces. J. Appl. Phys. 2009, 105, 084912. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, F.; Cheng, Y.; Xu, N.; Xu, Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [CrossRef]
- Huang, M.; Cheng, Y.; Zhao, F.; Xu, Z. The significant role of plasmonic effects in femtosecond laser-induced grating fabrication on the nanoscale. Ann. Phys. 2013, 525, 74–86. [Google Scholar] [CrossRef]
- Garrelie, F.; Colombier, J.P.; Pigeon, F.; Tonchev, S.; Faure, N.; Bounhalli, M.; Reynaud, S.; Parriaux, O. Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt. Express 2008, 19, 9035–9043. [Google Scholar] [CrossRef]
- Robitaille, A.; Boulais, E.; Meunier, M. Mechanisms of plasmon-enhanced femtosecond laser nanoablation of silicon. Opt. Express 2013, 21, 9703–9710. [Google Scholar] [CrossRef]
- Derrien, T.J.-Y.; Itina, T.E.; Torres, R.; Sarnet, T.; Sentis, M. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 2013, 114, 083104. [Google Scholar] [CrossRef]
- Derrien, T.J.-Y.; Krüger, J.; Itina, T.E.; Höhm, S.; Rosenfeld, A.; Bonse, J. Rippled area formed by surface plasmon polaritons upon femtosecond laser double-pulse irradiation of silicon. Appl. Phys. A 2014, 117, 77–81. [Google Scholar] [CrossRef]
- Straub, M.; Afshar, M.; Feili, D.; Seidel, H.; König, K. Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon. J. Appl. Phys. 2012, 111, 124315. [Google Scholar] [CrossRef]
- Zhu, J.-T.; Shen, Y.-F.; Li, W.; Chen, X.; Yin, G.; Chen, D.-Y.; Zhao, L. Effect of polarization on femtosecond laser pulses structuring silicon surface. Appl. Surf. Sci. 2006, 252, 2752–2756. [Google Scholar] [CrossRef]
- Song, H.-Y.; Liu, S.-B.; Liu, H.Y.; Wang, Y.; Chen, T.; Dong, X.-M. Subwavelength topological structures resulting from surface two-plasmon resonance by femtosecond laser exposure solid surface. Opt. Express 2016, 24, 12151–12165. [Google Scholar] [CrossRef]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V. Nanoscale surface boiling in sub-threshold spallation of bulk aluminum and gold by single femtosecond laser pulses. Laser Phys. Lett. 2016, 13, 025603. [Google Scholar] [CrossRef]
- Nathala, C.C.S.; Ali, A.; Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Ganz, T.; Assion, A.; Hussinsky, W. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Opt. Express 2015, 23, 5915–5929. [Google Scholar] [CrossRef]
- Mermillaud-Blondin, A.; Bonse, J.; Rosenfeld, A.; Hertel, I.V.; Meshcheryakov, Y.P.; Bulgakova, N.M.; Audouard, E.; Stoian, R. Dynamics of femtosecond laser induced voidlike structures in fused silica. Appl. Phys. Lett. 2009, 94, 041911. [Google Scholar] [CrossRef]
- Zimmermann, F.; Plech, A.; Richter, S.; Tünnermann, A.; Nolte, S. The onset of ultrashort pulse-induced nanogratings. Laser-Photonics Rev. 2016, 10, 327–334. [Google Scholar] [CrossRef]
- Puerto, D.; Garcia-Lechuga, M.; Solis, J.; Siegel, J. Study of phase change LIPSS formation in Si by fs-resolved microscopy. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Garcia-Lechuga, M.; Puerto, D.; Fuentes-Edfuf, Y.; Solis, J.; Siegel, J. Ultrafast moving-spot microscopy: Birth and growth of laser of laser-induced periodic surface surface structures. ACS Photonics 2016, 3, 1961–1967. [Google Scholar] [CrossRef]
- Bonse, J.; Rosenfeld, A.; Krüger, J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond laser pulses. J. Appl. Phys. 2009, 106, 104910. [Google Scholar] [CrossRef]
- Satapathy, P.; Panda, R.; Sahoo, R.; Shukla, M.K.; Khatua, M.K.; Sahoo, P.K.; Das, R.; Das, S.K. Observation of continuous and non-continuous laser-induced periodic structures on silicon. J. Laser Micro Nanoeng. 2018, 13, 146–149. [Google Scholar]
- Höhm, S.; Herzlieb, M.; Rosenfeld, A.; Krüger, J.; Bonse, J. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation. Opt. Express 2015, 23, 61–71. [Google Scholar] [CrossRef]
- Tan, B.; Venkatakrishnan, K. A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 2006, 16, 1080–1085. [Google Scholar] [CrossRef]
- Hamad, S.; Moram, S.S.B.; Yendeti, B.; Podagatlapalli, G.K. Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multiutility SERS platforms. ACS Omega 2018, 3, 18420–18432. [Google Scholar] [CrossRef]
- Cheng, K.; Liu, J.; Cao, K.; Chen, L.; Zhang, Y.; Jiang, Q.; Feng, D.; Zhang, S.; Sun, Z.; Jia, T. Ultrafast dynamics of single-pulse femtosecond laser-induced periodic ripples on the surface of a gold film. Phys. Rev. B 2018, 98, 184106. [Google Scholar] [CrossRef]
- Wehner, R.; Grunwald, R. Combined plasmonic and thermal mechanism of laser-induced nanostructure formation in silicon. In Proceedings of the 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 25–29 June 2017. [Google Scholar]
- Sokolowski-Tinten, K.; von der Linde, D. Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 2000, 61, 2643–2650. [Google Scholar] [CrossRef]
- Gamaly, E.G.; Rode, A.V. Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse. J. Opt. Soc. Am. B 2014, 31, C36–C43. [Google Scholar] [CrossRef]
- Jellison, G.E., Jr. Optical functions of silicon determined by two-channel polarization modulation ellipsometry. Opt. Mater. 1992, 1, 41–47. [Google Scholar] [CrossRef]
- Sabbah, A.J.; Riffe, D.M. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 2002, 66, 165217. [Google Scholar] [CrossRef]
- Palik, E. Handbook of Optical Constants of Solids, 4th ed.; Academic Press: Cambridge, MD, USA, 1998. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 5th ed.; John Wiley and Sons Inc.: New York, NY, USA, 2005; p. 396. [Google Scholar]
- Shazad, M. Infrared Surface Plasmon Polaritons on Semiconductor, Semimetal and Conducting Polymer. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2012; p. 15. [Google Scholar]
- Gnilitskyi, I.; Grudzev, V.; He, X.; Sergaeva, O.; Ji, P.; White, T.; Zhang, Y. Sub-surface layer of silicon singe crystal periodically nanostructured by near-infrared femtosecond laser pulses. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Hong Kong, China, 29 July–3 August 2018. [Google Scholar]
- He, S.; Nivas, J.J.J.; Vecchione, A.; Hu, M.; Amoruso, S. On the generation of grooves on crystalline silicon irradiated by femtosecond laser pulses. Opt. Express 2016, 24, 3238–3247. [Google Scholar] [CrossRef]
- Bonse, J. All-optical characterization of single femtosecond laser-pulse-induced amorphization in silicon. Appl. Phys. A 2006, 84, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Piers, D.; Spicer, W. Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 1972, 5, 3017–3029. [Google Scholar] [CrossRef]
- Choi, T.; Hwang, D.; Grigoropoulos, C. Ultrafast laser-induced crystallization of amorphous silicon films. Opt. Eng. 2003, 42, 3383–3389. [Google Scholar]
- Pitarke, J.M.; Silkin, V.M.; Chulkov, E.V.; Echenique, P.M. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2007, 70, 1–87. [Google Scholar] [CrossRef]
- Teng, Y.-Y.; Stern, E.A. Plasma Radiation from Metal Grating Surfaces. Phys. Rev. Lett. 1967, 19, 511–514. [Google Scholar] [CrossRef]
- Sprafke, A. Optische Nahfeld-Wechselwirkungen von Plasmonen mit Ihrer Umgebung. Ph.D. Thesis, University Aachen, Aachen, Germany, 2014. [Google Scholar]
- Tomita, T.; Kinoshita, K.; Matsuo, S.; Hashimoto, S. Effect of surface roughening on femtosecond laser-induced ripple structures. Appl. Phys. Lett. 2007, 90, 153115. [Google Scholar] [CrossRef]
- Roeterdink, W.G.; Juurlink, L.B.F.; Vaughan, O.P.H.; Dura Diez, J.; Bonn, M.; Kleyn, A.W. Coulomb explosion in femtosecond laser ablation of Si (111). Appl. Phys. Lett. 2003, 82, 4190. [Google Scholar] [CrossRef]
- Höhm, S.; Rosenfeld, A.; Krüger, J.; Bonse, J. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica. Appl. Phys. Lett. 2013, 102, 054102. [Google Scholar] [CrossRef]
- Qi, L.; Nishii, K.; Namba, Y. Regular sub-wavelength ripples formation by femtosecond laser pulses on silicon. Optik 2015, 126, 4905–4909. [Google Scholar] [CrossRef]
- Cvecek, K.; Miyamoto, I.; Schmidt, M. Gas bubble formation in fused silica generated by ultra-short laser pulses. Opt. Express 2014, 22, 15877–15893. [Google Scholar] [CrossRef]
- Liang, F.; Vallée, R.; Chin, S.L. Physical evolution of nanograting inscription on the surface of fused silica. Opt. Express 2012, 2, 900–906. [Google Scholar] [CrossRef]
- Jia, X.; Yuan, Y.; Yang, D.; Jia, T. Ultrafast time-resolved imaging of femtosecond laser-induced periodic surface structures on GaAs. Chin. Opt. Lett. 2014, 12, 113203. [Google Scholar]
- Gemini, L.; Hashida, M.; Shimizu, M.; Miyasaka, Y.; Inoue, S.; Tokita, S.; Limpouch, J.; Mocek, T.; Sakabe, S. Periodic nanostructures self-formed on silicon and silicon carbide by femtosecond laser irradiation. Appl. Phys. A 2014, 117, 49–54. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wehner, R.; Grunwald, R. Feedback-Driven Plasmonic-Thermal Route to Femtosecond-Laser-Induced Periodic Surface Structures in Silicon Indicated by Pump-Probe Scattering and Diffraction. Surfaces 2019, 2, 277-294. https://doi.org/10.3390/surfaces2020021
Wehner R, Grunwald R. Feedback-Driven Plasmonic-Thermal Route to Femtosecond-Laser-Induced Periodic Surface Structures in Silicon Indicated by Pump-Probe Scattering and Diffraction. Surfaces. 2019; 2(2):277-294. https://doi.org/10.3390/surfaces2020021
Chicago/Turabian StyleWehner, Robin, and Ruediger Grunwald. 2019. "Feedback-Driven Plasmonic-Thermal Route to Femtosecond-Laser-Induced Periodic Surface Structures in Silicon Indicated by Pump-Probe Scattering and Diffraction" Surfaces 2, no. 2: 277-294. https://doi.org/10.3390/surfaces2020021
APA StyleWehner, R., & Grunwald, R. (2019). Feedback-Driven Plasmonic-Thermal Route to Femtosecond-Laser-Induced Periodic Surface Structures in Silicon Indicated by Pump-Probe Scattering and Diffraction. Surfaces, 2(2), 277-294. https://doi.org/10.3390/surfaces2020021