Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer’s Disease: A Cross-Sectional Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics
2.2. Outcomes
2.2.1. Effect of Short Sleep Duration on ANS Regulation
2.2.2. Effect of Longer Sleep Duration on ANS Regulation
3. Discussion
3.1. ANS Dysregulation Is Related to Inadequate Sleep Duration in Sympathetic-Mediated Diseases
3.2. Medications Disrupt Bidirectional Associations between Sleep Duration and ANS Regulation
3.3. Sleep Duration Effects on PSNS Activity
3.4. Feasibility of This Study
3.5. Limitations
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Design
4.3. Participants
4.4. Instruments and Outcome Measures
4.4.1. Validity and Reliability of the HRV Data
4.4.2. Validity and Reliability of Sleep Duration Data
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Zhong, G.; Naismith, S.L.; Rogers, N.L.; Lewis, S.J. Sleep-wake disturbances in common neurodegenerative diseases: A closer look at selected aspects of the neural circuitry. J. Neurol. Sci. 2011, 307, 9–14. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. Heart rate variability in patients with dementia or neurocognitive disorders: A systematic review and meta-analysis. Aust. N. Z. J. Psychiatry 2022, 56, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.A.; George, E.B.; Nazir, T.; Sunkara, Y.; Catiul, C.; Amara, A.W. Heart rate variability during sleep in synucleinopathies: A review. Front. Neurol. 2023, 14, 1323454. [Google Scholar] [CrossRef] [PubMed]
- Zoccoli, G.; Amici, R. Sleep and autonomic nervous system. Curr. Opin. Physiol. 2020, 15, 128–133. [Google Scholar] [CrossRef]
- Liu, C.R.; Liou, Y.M.; Jou, J.H. Ambient bright lighting in the morning improves sleep disturbances of older adults with dementia. Sleep Med. 2022, 89, 1–9. [Google Scholar] [CrossRef]
- Wong, R.; Lovier, M.A. Sleep disturbances and dementia risk in older adults: Findings from 10 years of national U.S. prospective data. Am. J. Prev. Med. 2023, 64, 781–787. [Google Scholar] [CrossRef]
- Van Erum, J.; Van Dam, D.; De Deyn, P.P. Alzheimer’s disease: Neurotransmitters of the sleep-wake cycle. Neurosci. Biobehav. Rev. 2019, 105, 72–80. [Google Scholar] [CrossRef]
- Xiong, X.; Hu, T.; Yin, Z.; Zhang, Y.; Chen, F.; Lei, P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 944283. [Google Scholar] [CrossRef]
- Beishon, L.C.; Hosford, P.; Gurung, D.; Brassard, P.; Minhas, J.S.; Robinson, T.G.; Haunton, V.; Panerai, R.B. The role of the autonomic nervous system in cerebral blood flow regulation in dementia: A review. Auton. Neurosci. 2022, 240, 102985. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Yu, R.L.; Wu, R.M.; Tan, C.H. Effect of ALDH2 on sleep disturbances in patients with Parkinson’s disease. Sci. Rep. 2019, 9, 18950. [Google Scholar] [CrossRef]
- Park, J.E.; Lee, Y.J.; Byun, M.S.; Yi, D.; Lee, J.H.; Jeon, S.Y.; Hwang, J.Y.; Yoon, H.; Choe, Y.M.; Kim, Y.K. Differential associations of age and Alzheimer’s disease with sleep and rest-activity rhythms across the adult lifespan. Neurobiol. Aging 2021, 101, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Tewari, D.; Mamun, A.A.; Kabir, M.T.; Niaz, K.; Wahed, M.I.I.; Barreto, G.E.; Ashraf, G.M. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res. Rev. 2020, 60, 101046. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Simon, K.C.; Sattari, N.; Whitehurst, L.N.; Mednick, S.C. Autonomic central coupling during daytime sleep differs between older and younger people. Neurobiol. Learn. Mem. 2022, 193, 107646. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Wang, Y.; Gao, Z.; Wang, J.; Liu, X.; Pang, G. Effects of Alzheimer’s disease of varying severity on cardiac and autonomic function. Braz. J. Med. Biol. Res. 2022, 55, e11504. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.R.; Kuo, T.B.J.; Jou, J.H.; Lai, C.L.; Chang, Y.K.; Liou, Y.M. Bright morning lighting enhancing parasympathetic activity at night: A pilot study on elderly female patients with dementia without a pacemaker. Healthcare 2023, 11, 793. [Google Scholar] [CrossRef]
- Chen, W.C.; Wang, X.Y. Longitudinal associations between sleep duration and cognitive impairment in Chinese elderly. Front. Aging Neurosci. 2022, 14, 1037650. [Google Scholar] [CrossRef]
- Carroll, J.E.; Prather, A.A. Sleep and biological aging: A short review. Curr. Opin. Endocr. Metab. Res. 2021, 18, 159–164. [Google Scholar] [CrossRef]
- Choi, J.; Cha, W.; Park, M.G. Declining trends of heart rate variability according to aging in healthy Asian adults. Front. Aging Neurosci. 2020, 12, 610626. [Google Scholar] [CrossRef]
- Choi, S.; Baudot, M.; Vivas, O.; Moreno, C.M. Slowing down as we age: Aging of the cardiac pacemaker’s neural control. Geroscience 2022, 44, 1–17. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, N.; Dai, J.; Zhao, Y.; Zhang, X.; Yin, J.; Yan, Y. Association of sleep duration with all-cause and cardiovascular mortality: A prospective cohort study. Front. Public Health 2022, 10, 880276. [Google Scholar] [CrossRef]
- Leng, Y.; Yaffe, K. Sleep duration and cognitive aging-beyond a U-shaped association. JAMA Netw. Open 2020, 3, e2014008. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, D.; Huang, Y.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Sleep duration and health outcomes: An umbrella review. Sleep Breath. 2022, 26, 1479–1501. [Google Scholar] [CrossRef] [PubMed]
- Lucey, B.P.; Wisch, J.; Boerwinkle, A.H.; Landsness, E.C.; Toedebusch, C.D.; McLeland, J.S.; Butt, O.H.; Hassenstab, J.; Morris, J.C.; Ances, B.M.; et al. Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer’s disease. Brain 2021, 144, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liang, L.; Zheng, F.; Shi, L.; Zhong, B.; Xie, W. Association between sleep duration and cognitive decline. JAMA Netw. Open 2020, 3, e2013573. [Google Scholar] [CrossRef] [PubMed]
- Pak, V.M.; Paul, S.; Swieboda, D.; Balthazar, M.S.; Wharton, W. Sleep duration and biomarkers of inflammation in African American and white participants with a parental history of Alzheimer’s disease. Alzheimer’s Dement 2022, 8, e12332. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart rate variability and cognitive function: A systematic review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef]
- Salami, O.; Lyketsos, C.; Rao, V. Treatment of sleep disturbance in Alzheimer’s dementia. Int. J. Geriatr. Psychiatry 2011, 26, 771–782. [Google Scholar] [CrossRef]
- Wang, C.; Holtzman, D.M. Bidirectional relationship between sleep and Alzheimer’s disease: Role of amyloid, tau, and other factors. Neuropsychopharmacology 2020, 45, 104–120. [Google Scholar] [CrossRef]
- Kim, H.; Jung, H.R.; Kim, J.B.; Kim, D.J. Autonomic dysfunction in sleep disorders: From neurobiological basis to potential therapeutic approaches. J. Clin. Neurol. 2022, 18, 140–151. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Q.; Wang, M.; Wang, P.; Shen, N. Prospective association between sleep duration and cognitive impairment: Findings from the China Health and Retirement Longitudinal Study (CHARLS). Front. Med. 2022, 9, 971510. [Google Scholar] [CrossRef]
- Tao, R.; Mi, B.; Hu, Y.; Lin, S.; Xiong, Y.; Lu, X.; Panayi, A.C.; Li, G.; Liu, G. Hallmarks of peripheral nerve function in bone regeneration. Bone Res. 2023, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalder, K.; Fuchs, L.; Ladwig, J.; Kyle, S.D.; Nissen, C.; Voderholzer, U.; Feige, B.; Riemann, D. Heart rate and heart rate variability in subjectively reported insomnia. J. Sleep Res. 2011, 20, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Goldstein, M.R.; Vazquez, M.; Williams, J.P.; Mullington, J.M. Effects of sleep and sleep deficiency on autonomic function in humans. Curr. Opin. Endocr. Metab. Res. 2021, 18, 268–274. [Google Scholar] [CrossRef]
- Rossi, A.; Mikail, N.; Bengs, S.; Haider, A.; Treyer, V.; Buechel, R.R.; Wegener, S.; Rauen, K.; Tawakol, A.; Bairey Merz, C.N.; et al. Heart-brain interactions in cardiac and brain diseases: Why sex matters. Eur. Heart J. 2022, 43, 3971–3980. [Google Scholar] [CrossRef]
- Nicolini, P.; Mari, D.; Abbate, C.; Inglese, S.; Bertagnoli, L.; Tomasini, E.; Rossi, P.D.; Lombardi, F. Autonomic function in amnestic and non-amnestic mild cognitive impairment: Spectral heart rate variability analysis provides evidence for a brain-heart axis. Sci. Rep. 2020, 10, 11661. [Google Scholar] [CrossRef]
- Fernandez-Mendoza, J.; He, F.; Calhoun, S.L.; Vgontzas, A.N.; Liao, D.; Bixler, E.O. Objective short sleep duration increases the risk of all-cause mortality associated with possible vascular cognitive impairment. Sleep Health 2020, 6, 71–78. [Google Scholar] [CrossRef]
- Li, M.; Wang, N.; Dupre, M.E. Association between the self-reported duration and quality of sleep and cognitive function among middle-aged and older adults in China. J. Affect. Disord. 2022, 304, 20–27. [Google Scholar] [CrossRef]
- Yu, R.L.; Wu, R.M. Mild cognitive impairment in patients with Parkinson’s disease: An updated mini-review and future outlook. Front. Aging Neurosci. 2022, 14, 943438. [Google Scholar] [CrossRef]
- Sakakibara, R.; Sawai, S.; Ogata, T.; Iimura, A. Autonomic dysfunction in older individuals: The contributions of multiple brain diseases and diabetes. Neurol. Clin. Neurosci. 2022, 10, 198–209. [Google Scholar] [CrossRef]
- Voumvourakis, K.I.; Sideri, E.; Papadimitropoulos, G.N.; Tsantzali, I.; Hewlett, P.; Kitsos, D.; Stefanou, M.; Bonakis, A.; Giannopoulos, S.; Tsivgoulis, G.; et al. The dynamic relationship between the glymphatic system, aging, memory, and sleep. Biomedicines 2023, 11, 2092. [Google Scholar] [CrossRef]
- Wang, C.; Bangdiwala, S.I.; Rangarajan, S.; Lear, S.A.; AlHabib, K.F.; Mohan, V.; Teo, K.; Poirier, P.; Tse, L.A.; Liu, Z.; et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: A study of 116,632 people from 21 countries. Eur. Heart J. 2019, 40, 1620–1629. [Google Scholar] [CrossRef] [PubMed]
- Olivares, M.J.; Toledo, C.; Ortolani, D.; Ortiz, F.C.; Díaz, H.S.; Iturriaga, R.; Del Río, R. Sleep dysregulation in sympathetic-mediated diseases: Implications for disease progression. Sleep 2022, 45, zsac166. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian variation of heart rate variability across sleep stages. Sleep 2013, 36, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Jarrin, D.C.; Ivers, H.; Lamy, M.; Chen, I.Y.; Harvey, A.G.; Morin, C.M. Cardiovascular autonomic dysfunction in insomnia patients with objective short sleep duration. J. Sleep Res. 2018, 27, e12663. [Google Scholar] [CrossRef]
- Ma, Y.; Chang, M.C.; Litrownik, D.; Wayne, P.M.; Yeh, G.Y. Day-night patterns in heart rate variability and complexity: Differences with age and cardiopulmonary disease. J. Clin. Sleep Med. 2023, 19, 873–882. [Google Scholar] [CrossRef]
- Kong, S.D.X.; Hoyos, C.M.; Phillips, C.L.; McKinnon, A.C.; Lin, P.; Duffy, S.L.; Mowszowski, L.; LaMonica, H.M.; Grunstein, R.R.; Naismith, S.L.; et al. Altered heart rate variability during sleep in mild cognitive impairment. Sleep 2021, 44, zsaa232. [Google Scholar] [CrossRef]
- Camargos, E.F.; Pandolfi, M.B.; Freitas, M.P.; Quintas, J.L.; Jde, O.L.; Miranda, L.C.; Pimentel, W.; Medeiros-Souza, P. Trazodone for the treatment of sleep disorders in dementia: An open-label, observational and review study. Arq. Neuro-Psiquiatr. 2011, 69, 44–49. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef]
- Huang, W.L.; Liao, S.C.; Kuo, T.B.J.; Chang, L.R.; Chen, T.T.; Chen, I.M.; Yang, C.C.H. The effects of antidepressants and quetiapine on heart rate variability. Pharmacopsychiatry 2016, 49, 191–198. [Google Scholar] [CrossRef]
- Kerkering, E.M.; Greenlund, I.M.; Bigalke, J.A.; Migliaccio, G.C.L.; Smoot, C.A.; Carter, J.R. Reliability of heart rate variability during stable and disrupted polysomnographic sleep. Am. J. Physiol.-Heart Circ. Physiol. 2022, 323, H16–H23. [Google Scholar] [CrossRef]
- Uysal, S. ICD-10-CM diagnosis coding for neuropsychological assessment. Arch. Clin. Neuropsychol. 2019, 34, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.D.; Hoyos, C.M.; Phillips, C.L.; McKinnon, A.C.; Palmer, J.R.; Duffy, S.L.; Mowszowski, L.; Lin, P.; Gordon, C.J.; Naismith, S.L. Left amygdala volume moderates the relationship between nocturnal high-frequency heart rate variability and verbal memory retention in older adults with amnestic mild cognitive impairment: Biomarkers (non-neuroimaging)/novel biomarkers. Alzheimer’s Dement 2020, 16, e044608. [Google Scholar] [CrossRef]
- Huang, H.C.; Tseng, Y.M.; Chen, Y.C.; Chen, P.Y.; Chiu, H.Y. Diagnostic accuracy of the Clinical Dementia Rating Scale for detecting mild cognitive impairment and dementia: A bivariate meta-analysis. Int. J. Geriatr. Psychiatry 2021, 36, 239–251. [Google Scholar] [CrossRef]
- Dalise, A.M.; Prestano, R.; Fasano, R.; Gambardella, A.; Barbieri, M.; Rizzo, M.R. Autonomic nervous system and cognitive impairment in older patients: Evidence from long-term heart rate variability in real-life setting. Front. Aging Neurosci. 2020, 12, 40. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.E.V.; Moreira, H.T.; de Oliveira, M.M.; Cintra, L.S.S.; Salgado, H.C.; Fazan, R., Jr.; Tinós, R.; Rassi, A., Jr.; Schmidt, A.; Marin-Neto, J.A. Heart rate variability as a biomarker in patients with chronic chagas cardiomyopathy with or without concomitant digestive involvement and its relationship with the Rassi score. BioMed. Eng. OnLine 2022, 21, 44. [Google Scholar] [CrossRef]
- Kuo, T.B.; Lin, T.; Yang, C.C.; Li, C.L.; Chen, C.F.; Chou, P. Effect of Aging on Gender Differences in Neural Control of Heart Rate. Am. J. Physiol. 1999, 277, H2233–H2239. [Google Scholar] [CrossRef]
Characteristic | Sleep Duration < 6 h | Sleep Duration of 6–9 h | Sleep Duration > 9 h | Total | p-Value a |
---|---|---|---|---|---|
Sex | 0.58 | ||||
1. Male | 3 (37.5%) | 4 (33.3%) | 4 (57.1%) | 11 (40.7%) | |
2. Female | 5 (62.5%) | 8 (66.7%) | 3 (42.9%) | 16 (59.3%) | |
Severity of AD | 0.86 | ||||
1. Mild | 5 (50%) | 5 (41.7%) | 2 (14.3%) | 12 (44.4%) | |
2. Moderate | 2 (25%) | 6 (50%) | 4 (57.1%) | 12 (44.4%) | |
3. Severe | 1 (12.5%) | 1 (8.3%) | 1 (14.3%) | 3 (11.1%) | |
Hypertension status | 0.56 | ||||
Yes | 4 (50.0%) | 8 (66.7%) | 3 (42.9%) | 15 (55.6%) | |
No | 4 (50.0%) | 4 (33.3%) | 4 (57.1%) | 12 (44.4%) | |
Mean (SD) | |||||
Age, y | 81.2 ± 6.7 | 78.7 ± 9.4 | 79.3 ± 9.7 | 79.5 ± 8.5 | 0.67 |
Medication dosage | |||||
Antipsychotics | 0.3 ± 0.3 | 1.0 ± 1.3 | 1.3. ± 1.8 | 0.8 ± 1.3 | 0.27 |
Antidepressants | 0.7 ± 0.7 | 0.5 ± 0.8 | 0.8 ± 0.6 | 0.6 ± 0.6 | 0.24 |
Benzodiazepines | 0.3 ± 0.3 | 0.2 ± 0.2 | 0.2 ± 0.3 | 0.2 ± 0.2 | 0.36 |
Sleep Duration per Night | LF% a Mean (SE) d | p-Value e | HF b Mean (SE) d | p-Value e | LF/HF c Mean (SE) d | p-Value e |
---|---|---|---|---|---|---|
Sleep duration < 6 h f | 41.8 (5.2) | 4.0 (0.5) | 4.3 (0.3) | |||
Sleep duration of 6–9 h g | 34.0 (4.9) | 4.8 (0.4) | 4.1 (0.2) | |||
Sleep duration > 9 h h | 45.7 (6.9) | 4.5 (0.6) | 4.8 (0.3) | |||
Shorter sleep duration i | 0.86 | 0.03 * | 0.5 | |||
Longer sleep duration j | 0.72 | 0.78 | 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-R.; Yang, C.-Y.; Sharma, D.; Chen, T.-H.; Huang, X.-Q.; Hung, T.-M.; Kuo, T.B.J.; Jou, J.-H. Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer’s Disease: A Cross-Sectional Pilot Study. Clocks & Sleep 2024, 6, 533-545. https://doi.org/10.3390/clockssleep6040035
Liu C-R, Yang C-Y, Sharma D, Chen T-H, Huang X-Q, Hung T-M, Kuo TBJ, Jou J-H. Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer’s Disease: A Cross-Sectional Pilot Study. Clocks & Sleep. 2024; 6(4):533-545. https://doi.org/10.3390/clockssleep6040035
Chicago/Turabian StyleLiu, Chuen-Ru, Chih-Yuan Yang, Dipanshu Sharma, Tun-Hao Chen, Xian-Qing Huang, Tsui-Mei Hung, Terry B. J. Kuo, and Jwo-Huei Jou. 2024. "Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer’s Disease: A Cross-Sectional Pilot Study" Clocks & Sleep 6, no. 4: 533-545. https://doi.org/10.3390/clockssleep6040035
APA StyleLiu, C. -R., Yang, C. -Y., Sharma, D., Chen, T. -H., Huang, X. -Q., Hung, T. -M., Kuo, T. B. J., & Jou, J. -H. (2024). Associations between Sleep Duration and Autonomic Nervous System Regulation in Patients with Probable Alzheimer’s Disease: A Cross-Sectional Pilot Study. Clocks & Sleep, 6(4), 533-545. https://doi.org/10.3390/clockssleep6040035