Intelligent Closed-Loop Fluxgate Current Sensor Using Digital Proportional–Integral–Derivative Control with Single-Neuron Pre-Optimization
Abstract
:1. Introduction
2. Fluxgate Technology
2.1. Fluxgate Basic Principle
2.2. Zero-Flux Principle Under a Closed-Loop
3. Sensor Structure
4. Closed-Loop Control Algorithms
4.1. Digital Positional PID Control Algorithm
4.2. Single-Neuron-Based Self-Pre-Optimization Algorithm
4.3. Control Flow Diagram
5. Experiment and Analysis
5.1. Experimental Results
5.2. Problem and Countermeasures
6. Conclusions and Suggested Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ADC | Analog-to-Digital Converter |
DAC | Digital-to-Analog Converter |
DC | Direct Current |
FS | Full Scale |
MCU | Microcontroller |
PID | Proportional Integral Derivative |
UART | Universal Asynchronous Receiver Transmitter |
References
- Yang, X.; Li, Y.; Zheng, W.; Guo, W.; Wang, Y.; Yan, R. Design and realization of a novel compact fluxgate current sensor. IEEE Trans. Magn. 2015, 51, 4002804. [Google Scholar]
- Yang, X.; Li, Y.; Guo, W.; Zheng, W.; Xie, C.; Yu, H. A new compact fluxgate current sensor for AC and DC application. IEEE Trans. Magn. 2014, 50, 4005704. [Google Scholar]
- Shen, X.; Teng, Y.; Hu, X. Design of a low-cost small-size fluxgate sensor. Sensors 2021, 21, 6598. [Google Scholar] [CrossRef] [PubMed]
- Ripka, P. Advances in fluxgate sensors. Sens. Actuators A Phys. 2003, 106, 8–14. [Google Scholar]
- Wei, S.; Liao, X.; Zhang, H.; Pang, J.; Zhou, Y. Recent progress of fluxgate magnetic sensors: Basic research and application. Sensors 2021, 21, 1500. [Google Scholar] [CrossRef]
- Ziegler, S.; Woodward, R.C.; Iu, H.H.-C.; Borle, L.J. Current sensing techniques: A review. IEEE Sens. J. 2009, 9, 354–376. [Google Scholar]
- Ripka, P. Review of fluxgate sensors. Sens. Actuators A Phys. 1992, 33, 129–141. [Google Scholar]
- Weiss, R.; Itzke, A.; ReitenspieB, J.; Hoffmann, I.; Weigel, R. A novel closed loop current sensor based on a circular array of magnetic field sensors. IEEE Sens. J. 2018, 19, 2517–2524. [Google Scholar]
- Ripka, P. Current sensors using magnetic materials. J. Optoelectron. Adv. Mater. 2004, 6, 587–592. [Google Scholar]
- Ripka, P. New directions in fluxgate sensors. J. Magn. Magn. Mater. 2000, 215, 735–739. [Google Scholar]
- Wang, S.; Lu, C.; Song, L.; Chen, Y.; Fu, Z.; Liu, F.; Huang, H. Research on characteristics of a high precision current sensor. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; pp. 1–4. [Google Scholar]
- Kaluza, F.; Grüger, A.; Grüger, H. New and future applications of fluxgate sensors. Sens. Actuators A Phys. 2003, 106, 48–51. [Google Scholar] [CrossRef]
- Schrittwieser, L.; Mauerer, M.; Bortis, D.; Ortiz, G.; Kolar, J.W. Novel principle for flux sensing in the application of a DC+ AC current sensor. IEEE Trans. Ind. Appl. 2015, 51, 4100–4110. [Google Scholar] [CrossRef]
- Schrittwieser, L.; Mauerer, M.; Bortis, D.; Ortiz, G.; Kolar, J.W. Novel principle for flux sensing in the application of a DC+ AC current sensor. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014—ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 1291–1298. [Google Scholar] [CrossRef]
- Shede, P.; Mane, S. Leakage current sensing techniques. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 4–5 May 2017; pp. 181–185. [Google Scholar]
- Topal, U.; Can, H.; Çelik, O.M.; Narman, A.; Kamiş, M.; Çıtak, V.; Çakrak, D.; Sözeri, H.; Svec, P. Design of fluxgate sensors for different applications from geology to medicine. J. Supercond. Nov. Magn. 2019, 32, 839–844. [Google Scholar] [CrossRef]
- Djamal, M.; Sanjaya, E. Development of fluxgate sensors and its applications. In Proceedings of the 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, 8–9 November 2011; pp. 421–426. [Google Scholar]
- Topal, U.; Švec, P.; Can, H.; Celik, F.; Birlikseven, C.; Skorvanek, I.; Andrejka, F.; Kunca, B.; Marcin, J.; Janotova, I.; et al. Optimization of the temperature stability of fluxgate sensors for space applications. IEEE Sens. J. 2020, 21, 2749–2756. [Google Scholar] [CrossRef]
- Azzoni, D.; Teppan, W.; Carpita, M. Battery monitoring current sensors: The fluxgate concept. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Wang, N.; Zhang, Z.; Li, Z.; He, Q.; Lin, F.; Lu, Y. Design and Characterization of a Low-Cost Self-Oscillating Fluxgate Transducer for Precision Measurement of High-Current. IEEE Sens. J. 2016, 16, 2971–2981. [Google Scholar] [CrossRef]
- Yang, X.; Guo, W.; Li, C.; Zhu, B.; Chen, T.; Ge, W. Design optimization of a fluxgate current sensor with low interference. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, L.; Pan, Y. Research progress in fluxgate current sensors for precise measurement. In Proceedings of the IET Conference Proceedings CP884, Shenzhen, China, 14–16 August 2024; The Institution of Engineering and Technology: Stevenage, UK, 2024; Volume 2024, pp. 92–98. [Google Scholar]
- Gao, W.; Wang, G.; Zhao, Q. Design and realization of fluxgate sensor signal processing unit. In Proceedings of the 2011 IEEE International Conference on Mechatronics and Automation, Beijing, China, 7–10 August 2011; pp. 2386–2391. [Google Scholar] [CrossRef]
- Angelopoulos, S.; Priftis, P.; Anastasopoulos, A.; Ktena, A.; Hristoforou, E. Design and development of a high-sensitivity, portable, and low-cost fluxgate magnetometer. IEEE Trans. Magn. 2022, 59, 1–8. [Google Scholar] [CrossRef]
- Borase, R.P.; Maghade, D.K.; Sondkar, S.Y.; Pawar, S.N. A review of PID control, tuning methods and applications. Int. J. Dyn. Control 2021, 9, 818–827. [Google Scholar] [CrossRef]
- Wu, H.; Su, W.; Liu, Z. PID controllers: Design and tuning methods. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics And Applications, Hangzhou, China, 9–11 June 2014; pp. 808–813. [Google Scholar]
- De Prada, C. PID Controllers and Tuning; Department Systems Engineering and Automatic Control, University of Valladolid: Spain. Available online: https://www.eii.uva.es/~prada/PidUK.pdf (accessed on 14 February 2025).
- Cay, Y.; Demirok, E.; Keysan, O. Modeling and Simulation of Fluxgate based Current Sensor. In Proceedings of the PCIM Europe 2024, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, Germany, 11–13 June 2024; pp. 3242–3250. [Google Scholar]
- Ponjavic, M.M.; Duric, R.M. Nonlinear modeling of the self-oscillating fluxgate current sensor. IEEE Sens. J. 2007, 7, 1546–1553. [Google Scholar] [CrossRef]
- Li, J.; Ren, W.; Luo, Y.; Zhang, X.; Liu, X.; Zhang, X. Design of Fluxgate Current Sensor Based on Magnetization Residence Times and Neural Networks. Sensors 2024, 24, 3752. [Google Scholar] [CrossRef]
- Çoker, E.G.; Can, H.; Selvi, S.; Svec, P.; Topal, U. Design of a DC current sensor based on fluxgate principle. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2019; Volume 2131. [Google Scholar]
- Velasco-Quesada, G.; Román-Lumbreras, M.; Conesa-Roca, A.; Jeréz, F. Design of a low-consumption fluxgate transducer for high-current measurement applications. IEEE Sens. J. 2010, 11, 280–287. [Google Scholar]
- Kudo, T.; Kuribara, S.; Takahashi, Y. Wide-range ac/dc earth leakage current sensor using fluxgate with self-excitation system. In Proceedings of the SENSORS, Limerick, Ireland, 28–31 October 2011; pp. 512–515. [Google Scholar]
- Youney, J. A Comparison and Evaluation of Common PID Tuning Methods. Electronic Theses and Dissertations, University of Central Florida, Orlando, FL, USA, 2007. [Google Scholar]
- Li, Z. Review of PID control design and tuning methods. J. Phys. Conf. Ser. 2023, 2649, 012009. [Google Scholar] [CrossRef]
- Bharat, S.; Ganguly, A.; Chatterjee, R.; Basak, B.; Sheet, D.K.; Ganguly, A. A review on tuning methods for PID controller. Asian J. Converg. Technol. (AJCT), 2019; V, ISSN 2350-1146. [Google Scholar]
- Wang, M.; Cheng, G.; Kong, X. A single neuron self-adaptive PID controller of brushless DC motor. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China, 6–7 January 2011; pp. 262–266. [Google Scholar]
- Lin, H.; Changlin, M.; Feng, L. Study of adaptive PID controller based on single neuron and genetic optimization. In Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, China, 16–18 August 2007; pp. 240–243. [Google Scholar]
- Yu, L.; Lim, J.G.; Fei, S. An improved single neuron self-adaptive PID control scheme of superheated steam temperature control system. Int. J. Syst. Control Inf. Process. 2017, 2, 1–13. [Google Scholar]
- Liu, J.; DC Current Sensor CYCT03-xnWS3. Released in January 2024. Available online: https://www.chenyang-gmbh.com/media/pdf/33/ec/73/CYCT03-xnWS3.pdf (accessed on 14 February 2025).
Method Type | Complexity | Precision | Effort | Adaptability |
---|---|---|---|---|
Trial and Error | Low | Low | High | Low |
Experiment-Based | Moderate | High | Moderate | Moderate |
Model-Based | High | High | High | Low |
Automatic Tuning | Moderate | High | Moderate | High |
Result | Parameterization | PID Parameter |
---|---|---|
Result 1 | K = 1.0, ηp = 0.8, ηi = 0.20, ηd = 0.1 | Kp = 0.6336, Ki = 0.3649, Kd = 0.0015 |
Result 2 | K = 0.8, ηp = 0.8, ηi = 0.03, ηd = 0.1 | Kp = 0.6747, Ki = 0.1212, Kd = 0.0041 |
Result 3 | K = 0.5, ηp = 0.5, ηi = 0.10, ηd = 0.1 | Kp = 0.3566, Ki = 0.1413, Kd = 0.0020 |
Result 4 | K = 0.1, ηp = 0.8, ηi = 0.10, ηd = 0.1 | Kp = 0.0712, Ki = 0.0263, Kd = 0.0024 |
Result 5 | K = 0.1, ηp = 0.8, ηi = 0.08, ηd = 0.1 | Kp = 0.0737, Ki = 0.0239, Kd = 0.0024 |
Result 6 | K = 0.1, ηp = 0.8, ηi = 0.02, ηd = 0.1 | Kp = 0.0873, Ki = 0.0114, Kd = 0.0012 |
Input (A) | VDAC (V) | Theor. Value (V) | Diff (V) | Non-Linearity |
---|---|---|---|---|
0.001 | 0.0008649 | 1.8965 × 10−5 | −0.000845935 | −0.03% |
0.197 | 0.6369142 | 0.637992105 | 0.001077905 | 0.03% |
0.394 | 1.280448 | 1.27922021 | −0.00122779 | −0.04% |
0.592 | 1.921707 | 1.92370328 | 0.00199628 | 0.06% |
0.789 | 2.56533 | 2.564931385 | −0.000398615 | −0.01% |
0.987 | 3.210018 | 3.209414455 | −0.000603545 | −0.02% |
Input (A) | VDAC (V) | Theor. Value (V) | Diff (V) | Non-Linearity |
---|---|---|---|---|
0.012 | 0.00033776 | 0.002367913 | 0.002030153 | 0.06% |
1.98 | 0.6365235 | 0.634203051 | −0.002320449 | −0.07% |
3.966 | 1.273239 | 1.271817169 | −0.001421831 | −0.04% |
5.961 | 1.91007 | 1.912320777 | 0.002250777 | 0.07% |
7.938 | 2.54812 | 2.547045405 | −0.001074595 | −0.03% |
9.931 | 3.186371 | 3.186906904 | 0.000535904 | 0.02% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Liu, J.; Heldwein, M.L.; Klaß, S. Intelligent Closed-Loop Fluxgate Current Sensor Using Digital Proportional–Integral–Derivative Control with Single-Neuron Pre-Optimization. Signals 2025, 6, 14. https://doi.org/10.3390/signals6020014
Song Q, Liu J, Heldwein ML, Klaß S. Intelligent Closed-Loop Fluxgate Current Sensor Using Digital Proportional–Integral–Derivative Control with Single-Neuron Pre-Optimization. Signals. 2025; 6(2):14. https://doi.org/10.3390/signals6020014
Chicago/Turabian StyleSong, Qiankun, Jigou Liu, Marcelo Lobo Heldwein, and Stefan Klaß. 2025. "Intelligent Closed-Loop Fluxgate Current Sensor Using Digital Proportional–Integral–Derivative Control with Single-Neuron Pre-Optimization" Signals 6, no. 2: 14. https://doi.org/10.3390/signals6020014
APA StyleSong, Q., Liu, J., Heldwein, M. L., & Klaß, S. (2025). Intelligent Closed-Loop Fluxgate Current Sensor Using Digital Proportional–Integral–Derivative Control with Single-Neuron Pre-Optimization. Signals, 6(2), 14. https://doi.org/10.3390/signals6020014