Previous Issue
Volume 6, September
 
 

Signals, Volume 6, Issue 4 (December 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 3492 KB  
Article
A Fuzzy Model for Predicting the Group and Phase Velocities of Circumferential Waves Based on Subtractive Clustering
by Youssef Nahraoui, El Houcein Aassif, Samir Elouaham and Boujemaa Nassiri
Signals 2025, 6(4), 56; https://doi.org/10.3390/signals6040056 (registering DOI) - 16 Oct 2025
Abstract
Acoustic scattering is a highly effective tool for non-destructive control and structural analysis. In many real-world applications, understanding acoustic scattering is essential for accurately detecting and characterizing defects, assessing material properties, and evaluating structural integrity without causing damage. One of the most critical [...] Read more.
Acoustic scattering is a highly effective tool for non-destructive control and structural analysis. In many real-world applications, understanding acoustic scattering is essential for accurately detecting and characterizing defects, assessing material properties, and evaluating structural integrity without causing damage. One of the most critical aspects of characterizing targets—such as plates, cylinders, and tubes immersed in water—is the analysis of the phase and group velocities of antisymmetric circumferential waves (A1). Phase velocity helps identify and characterize wave modes, while group velocity allows for tracking energy, detecting, and locating anomalies. Together, they are essential for monitoring and diagnosing cylindrical shells. This research employs a Sugeno fuzzy inference system (SFIS) combined with a Fuzzy Subtractive Clustering (FSC) identification technique to predict the velocities of antisymmetric (A1) circumferential signals propagating around an infinitely long cylindrical shell of different b/a radius ratios, where a is the outer radius, and b is the inner radius. These circumferential waves are generated when the shell is excited perpendicularly to its axis by a plane wave. Phase and group velocities are determined by using resonance eigenmode theory, and these results are used as training and testing data for the fuzzy model. The proposed approach demonstrates high accuracy in modeling and predicting the behavior of these circumferential waves. The fuzzy model’s predictions show excellent agreement with the theoretical results, as confirmed by multiple error metrics, including the Mean Absolute Error (MAE), Standard Error (SE), and Mean Relative Error (MRE). Full article
(This article belongs to the Special Issue Recent Development of Signal Detection and Processing)
Show Figures

Figure 1

11 pages, 823 KB  
Article
Closed-Form Solution Lagrange Multipliers in Worst-Case Performance Optimization Beamforming
by Tengda Pei and Bingnan Pei
Signals 2025, 6(4), 55; https://doi.org/10.3390/signals6040055 - 4 Oct 2025
Viewed by 235
Abstract
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. [...] Read more.
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. The method was first developed for a single plane wave scenario and then generalized to multiplane wave cases with an autocorrelation matrix rank of N. Simulations demonstrate that the proposed Lagrange multiplier formula exhibits a performance comparable to that of the second-order cone programming (SOCP) method in terms of signal-to-interference-plus-noise ratio (SINR) and direction-of-arrival (DOA) estimation accuracy, while offering a significant reduction in computational complexity. The proposed method requires three orders of magnitude less computation time than the SOCP and has a computational efficiency similar to that of the diagonal loading (DL) technique, outperforming DL in SINR and DOA estimations. Fourier amplitude spectrum analysis revealed that the beamforming filters obtained using the proposed method and the SOCP shared frequency distribution structures similar to the ideal optimal beamformer (MVDR), whereas the DL method exhibited distinct characteristics. The proposed analytical expressions for the Lagrange multipliers provide a valuable tool for implementing robust and real-time adaptive beamforming for practical applications. Full article
Show Figures

Figure 1

22 pages, 2031 KB  
Review
Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
by Anggunmeka Luhur Prasasti, Achmad Rizal, Bayu Erfianto and Said Ziani
Signals 2025, 6(4), 54; https://doi.org/10.3390/signals6040054 - 4 Oct 2025
Viewed by 849
Abstract
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review [...] Read more.
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms and multimodal fusion have been achieved. However, this research also identified crucial gaps in computational efficiency, hardware scalability (particularly concerning the complex and often costly adaptive sensing hardware required for dynamic CS applications), and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and SCG). The findings strongly emphasize the potential of integrating CS with deep reinforcement learning and edge computing to develop energy-efficient, real-time healthcare monitoring systems, paving the way for future innovations in Internet of Medical Things (IoMT) applications. Full article
Show Figures

Figure 1

41 pages, 3403 KB  
Review
Towards Next-Generation FPGA-Accelerated Vision-Based Autonomous Driving: A Comprehensive Review
by Md. Reasad Zaman Chowdhury, Ashek Seum, Mahfuzur Rahman Talukder, Rashed Al Amin, Fakir Sharif Hossain and Roman Obermaisser
Signals 2025, 6(4), 53; https://doi.org/10.3390/signals6040053 - 1 Oct 2025
Viewed by 521
Abstract
Autonomous driving has emerged as a rapidly advancing field in both industry and academia over the past decade. Among the enabling technologies, computer vision (CV) has demonstrated high accuracy across various domains, making it a critical component of autonomous vehicle systems. However, CV [...] Read more.
Autonomous driving has emerged as a rapidly advancing field in both industry and academia over the past decade. Among the enabling technologies, computer vision (CV) has demonstrated high accuracy across various domains, making it a critical component of autonomous vehicle systems. However, CV tasks are computationally intensive and often require hardware accelerators to achieve real-time performance. Field Programmable Gate Arrays (FPGAs) have gained popularity in this context due to their reconfigurability and high energy efficiency. Numerous researchers have explored FPGA-accelerated CV solutions for autonomous driving, addressing key tasks such as lane detection, pedestrian recognition, traffic sign and signal classification, vehicle detection, object detection, environmental variability sensing, and fault analysis. Despite this growing body of work, the field remains fragmented, with significant variability in implementation approaches, evaluation metrics, and hardware platforms. Crucial performance factors, including latency, throughput, power consumption, energy efficiency, detection accuracy, datasets, and FPGA architectures, are often assessed inconsistently. To address this gap, this paper presents a comprehensive literature review of FPGA-accelerated, vision-based autonomous driving systems. It systematically examines existing solutions across sub-domains, categorizes key performance factors and synthesizes the current state of research. This study aims to provide a consolidated reference for researchers, supporting the development of more efficient and reliable next generation autonomous driving systems by highlighting trends, challenges, and opportunities in the field. Full article
Show Figures

Figure 1

18 pages, 1949 KB  
Article
EEG-Based Analysis of Motor Imagery and Multi-Speed Passive Pedaling: Implications for Brain–Computer Interfaces
by Cristian Felipe Blanco-Diaz, Aura Ximena Gonzalez-Cely, Denis Delisle-Rodriguez and Teodiano Freire Bastos-Filho
Signals 2025, 6(4), 52; https://doi.org/10.3390/signals6040052 - 1 Oct 2025
Viewed by 334
Abstract
Decoding motor imagery (MI) of lower-limb movements from electroencephalography (EEG) signals remains a challenge due to the involvement of deep cortical regions, limiting the applicability of Brain–Computer Interfaces (BCIs). This study proposes a novel protocol that combines passive pedaling (PP) as sensory priming [...] Read more.
Decoding motor imagery (MI) of lower-limb movements from electroencephalography (EEG) signals remains a challenge due to the involvement of deep cortical regions, limiting the applicability of Brain–Computer Interfaces (BCIs). This study proposes a novel protocol that combines passive pedaling (PP) as sensory priming with MI at different speeds (30, 45, and 60 rpm) to improve EEG-based classification. Ten healthy participants performed PP followed by MI tasks while EEG data were recorded. An increase in spectral relative power around Cz associated with both PP and MI was observed, varying with speed and suggesting that PP may enhance cortical engagement during MI. Furthermore, our classification strategy, based on Convolutional Neural Networks (CNNs), achieved an accuracy of 0.87–0.89 across four classes (three speeds and rest). This performance was also compared with the standard Common Spatial Patterns (CSP) and Linear Discriminant Analysis (LDA), which achieved an accuracy of 0.67–0.76. These results demonstrate the feasibility of multiclass decoding of imagined pedaling velocities and lay the groundwork for speed-adaptive BCIs, supporting future personalized and user-centered neurorehabilitation interventions. Full article
(This article belongs to the Special Issue Advances in Biomedical Signal Processing and Analysis)
Show Figures

Figure 1

48 pages, 912 KB  
Review
Convergence of Integrated Sensing and Communication (ISAC) and Digital-Twin Technologies in Healthcare Systems: A Comprehensive Review
by Youngboo Kim, Seungmin Oh and Gayoung Kim
Signals 2025, 6(4), 51; https://doi.org/10.3390/signals6040051 - 29 Sep 2025
Viewed by 771
Abstract
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet [...] Read more.
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet that need by analyzing how ISAC unifies sensing and communication to gather and transmit data with high timeliness and reliability and how digital-twin platforms use these streams to maintain continuously updated virtual replicas of patients, devices, and care environments. Our synthesis compares ISAC frequency options across sub-6 GHz, millimeter-wave, and terahertz bandswith respect to resolution, penetration depth, exposure compliance, maturity, and cost, and it discusses joint waveform design and emerging 6G architectures. It also presents reference architecture patterns that connect heterogeneous clinical sensors to ISAC links, data ingestion, semantic interoperability pipelines using Fast Healthcare Interoperability Resources (FHIR) and IEEE 11073, and digital-twin synchronization, and it catalogs clinical and operational applications, together with validation and integration requirements. We conduct a targeted scoping review of peer-reviewed literature indexed in major scholarly databases between January 2015 and July 2025, with inclusion restricted to English-language, peer-reviewed studies already cited by this survey, and we apply a transparent screening and data extraction procedure to support reproducibility. The survey further reviews clinical opportunities enabled by data-synchronized twins, including personalized therapy planning, proactive early-warning systems, and virtual intervention testing, while outlining the technical, clinical, and organizational hurdles that must be addressed. Finally, we examine workflow adaptation; governance and ethics; provider training; and outcome measurement frameworks such as length of stay, complication rates, and patient satisfaction, and we conclude that by highlighting both the integration challenges and the operational upside, this survey offers a foundation for the development of safe, ethical, and scalable data-driven healthcare models. Full article
Show Figures

Figure 1

17 pages, 2255 KB  
Article
Electromyography-Based Sign Language Recognition: A Low-Channel Approach for Classifying Fruit Name Gestures
by Kudratjon Zohirov, Mirjakhon Temirov, Sardor Boykobilov, Golib Berdiev, Feruz Ruziboev, Khojiakbar Egamberdiev, Mamadiyor Sattorov, Gulmira Pardayeva and Kuvonch Madatov
Signals 2025, 6(4), 50; https://doi.org/10.3390/signals6040050 - 25 Sep 2025
Viewed by 868
Abstract
This paper presents a method for recognizing sign language gestures corresponding to fruit names using electromyography (EMG) signals. The proposed system focuses on classification using a limited number of EMG channels, aiming to reduce classification process complexity while maintaining high recognition accuracy. The [...] Read more.
This paper presents a method for recognizing sign language gestures corresponding to fruit names using electromyography (EMG) signals. The proposed system focuses on classification using a limited number of EMG channels, aiming to reduce classification process complexity while maintaining high recognition accuracy. The dataset (DS) contains EMG signal data of 46 hearing-impaired people and descriptions of fruit names, including apple, pear, apricot, nut, cherry, and raspberry, in sign language (SL). Based on the presented DS, gesture movements were classified using five different classification algorithms—Random Forest, k-Nearest Neighbors, Logistic Regression, Support Vector Machine, and neural networks—and the algorithm that gives the best result for gesture movements was determined. The best classification result was obtained during recognition of the word cherry based on the RF algorithm, and 97% accuracy was achieved. Full article
(This article belongs to the Special Issue Advances in Signal Detecting and Processing)
Show Figures

Figure 1

Previous Issue
Back to TopTop