Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet
[...] Read more.
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet that need by analyzing how ISAC unifies sensing and communication to gather and transmit data with high timeliness and reliability and how digital-twin platforms use these streams to maintain continuously updated virtual replicas of patients, devices, and care environments. Our synthesis compares ISAC frequency options across sub-6 GHz, millimeter-wave, and terahertz bandswith respect to resolution, penetration depth, exposure compliance, maturity, and cost, and it discusses joint waveform design and emerging 6G architectures. It also presents reference architecture patterns that connect heterogeneous clinical sensors to ISAC links, data ingestion, semantic interoperability pipelines using Fast Healthcare Interoperability Resources (FHIR) and IEEE 11073, and digital-twin synchronization, and it catalogs clinical and operational applications, together with validation and integration requirements. We conduct a targeted scoping review of peer-reviewed literature indexed in major scholarly databases between January 2015 and July 2025, with inclusion restricted to English-language, peer-reviewed studies already cited by this survey, and we apply a transparent screening and data extraction procedure to support reproducibility. The survey further reviews clinical opportunities enabled by data-synchronized twins, including personalized therapy planning, proactive early-warning systems, and virtual intervention testing, while outlining the technical, clinical, and organizational hurdles that must be addressed. Finally, we examine workflow adaptation; governance and ethics; provider training; and outcome measurement frameworks such as length of stay, complication rates, and patient satisfaction, and we conclude that by highlighting both the integration challenges and the operational upside, this survey offers a foundation for the development of safe, ethical, and scalable data-driven healthcare models.
Full article