Smart Cities with Green Resilience: A Quasi-Natural Experiment Based on Artificial Intelligence
Abstract
:Highlights
- The CET policy can reduce the total energy consumption and promote the renewable energy consumption locally, with no significant influence on total energy consumption in surrounding areas. However, it causes a decrease in the renewable energy consumption ratio in neighboring regions.
- AI significantly reduces energy consumption and promotes renewable energy consumption in surrounding areas. Benefiting from AI-enabled smart city construction, the local region achieves a notable 8.55% reduction in total energy consumption, which exceeds the effect of implementing CET policy alone.
- The CET policy of cities exerts a catalytic effect, increasing energy consumption and carbon emission costs in local regions, promoting energy structure transformation, while avoiding the relocation of high-energy-consuming enterprises to surrounding areas. However, due to the “siphoning effect”, the policy absorbs renewable resources from neighboring regions, necessitating enhanced coordination with adjacent areas.
- AI can break down regional barriers through spatial effects, fostering cross-regional spillovers of green concepts and the application of green technological innovations, thereby counterbalancing the “siphoning effect” and facilitating the formation of a green smart city cluster. Smart city development enables the compatibility of “green resilience” and “smart functionality”.
Abstract
1. Introduction
2. Literature Review
2.1. Institution-Based View Under the CET Context
2.2. AI-Based Ecosystem-Specific Advantages (ESA)
3. Data and Statistics
3.1. Data
3.1.1. CET Policy and AI Data
3.1.2. Energy Consumption Data
3.1.3. Renewable Energy Data
3.1.4. Socio-Economic Data
4. Research Methodology
4.1. Modeling
4.2. Selection of Spatial Measurement Models
4.3. Empirical Analysis
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holling, C.S. Resilience and stability of ecological systems. In Foundations of Socio-Environmental Research: Legacy Readings with Commentaries; Cambridge University Press: Cambridge, UK, 2022; pp. 460–482. [Google Scholar]
- Lawrence, V. Resilient cities: Clarifying concept or catch-all cliche? In The City Reader; Routledge: London, UK, 2020; pp. 492–502. [Google Scholar]
- Petrescu, M.; Krishen, A.S.; Kachen, S.; Gironda, J.T. AI-based innovation in B2B marketing: An interdisciplinary framework incorporating academic and practitioner perspectives. Ind. Mark. Manag. 2022, 103, 61–72. [Google Scholar] [CrossRef]
- De Togni, G.; Erikainen, S.; Chan, S.; Cunningham, B.S. What makes AI ‘intelligent’ and ‘caring’? Exploring affect and relationality across three sites of intelligence and care. Soc. Sci. Med. 2021, 277, 113874. [Google Scholar] [CrossRef] [PubMed]
- Pimenow, S.; Pimenowa, O.; Prus, P. Challenges of Artificial Intelligence Development in the Context of Energy Consumption and Impact on Climate Change. Energies 2024, 17, 5965. [Google Scholar] [CrossRef]
- Meenal, R.; Binu, D.; Ramya, K.C.; Michael, P.A.; Vinoth Kumar, K.; Rajasekaran, E.; Sangeetha, B. Weather Forecasting for Renewable Energy System: A Review. Arch. Comput. Methods Eng. 2022, 29, 2875–2891. [Google Scholar] [CrossRef]
- Enescu, F.M.; Marinescu, C.N.; Ionescu, V.M.; Ştirbu, C. System for monitoring and controlling renewable energy sources. In Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2017, Targoviste, Romania, 29 June–1 July 2017; pp. 1–6. [Google Scholar]
- Qiu, J.; Zhao, J.; Wen, F.; Zhao, J.; Gao, C.; Zhou, Y.; Tao, Y.; Lai, S. Challenges and Pathways of Low-Carbon Oriented Energy Transition and Power System Planning Strategy: A Review. IEEE Trans. Netw. Sci. Eng. 2023, 11, 5396–5416. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, P.; Zhu, H. The Impact of Industrial Intelligence on Energy Intensity: Evidence from China. Sustainability 2022, 14, 7219. [Google Scholar] [CrossRef]
- Badareu, G.; Doran, M.D.; Firu, M.A.; Croitoru, I.M.; Doran, N.M. Exploring the Role of Robots and Artificial Intelligence in Advancing Renewable Energy Consumption. Energies 2024, 17, 4474. [Google Scholar] [CrossRef]
- Li, J.; Ma, S.; Qu, Y.; Wang, J. The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China. Resour. Policy 2023, 82, 103507. [Google Scholar] [CrossRef]
- Ma, Z.; Jorgensen, B.N.; Ma, Z.G. Eco-driving Intelligent Systems and Algorithms: A Patent Review. In Proceedings of the 2023 8th International Conference on Power and Renewable Energy, ICPRE 2023, Shanghai, China, 22–25 September 2023; pp. 285–290. [Google Scholar]
- Sorrell, S.; Dimitropoulos, J. The rebound effect: Microeconomic definitions, limitations and extensions. Ecol. Econ. 2008, 65, 636–649. [Google Scholar] [CrossRef]
- De Vries, A. The growing energy footprint of artificial intelligence. Joule 2023, 7, 2191–2194. [Google Scholar] [CrossRef]
- Konhäuser, K.; Werner, T. Uncovering the financial impact of energy-efficient building characteristics with explainable artificial intelligence. Appl. Energy 2024, 374, 123960. [Google Scholar] [CrossRef]
- Eilam, T.; Bose, P.; Carloni, L.P.; Cidon, A.; Franke, H.; Kim, M.A.; Lee, E.K.; Naghshineh, M.; Parida, P.; Stein, C.S.; et al. Reducing Datacenter Compute Carbon Footprint by Harnessing the Power of Specialization: Principles, Metrics, Challenges and Opportunities. IEEE Trans. Semicond. Manuf. 2024, 37, 481–488. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef]
- Coase, R.H. The problem of social cost. J. Law Econ. 2013, 56, 837–877. [Google Scholar] [CrossRef]
- Hong, Q.; Cui, L.; Hong, P. The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China’s carbon emissions trading pilot. Energy Econ. 2022, 110, 106025. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Q.; Wang, M.; Cheong, T.S.; Shum, W.Y.; Huang, J. Assessing the effects of emissions trading systems on energy consumption and energy mix. Appl. Energy 2022, 310, 118583. [Google Scholar] [CrossRef]
- Huang, S.; Du, C.; Jin, X.; Zhang, D.; Wen, S.; Jia, Z. The Impact of Carbon Emission Trading on Renewable Energy: A Comparative Analysis Based on the CGE Model. Sustainability 2023, 15, 12649. [Google Scholar] [CrossRef]
- Pietzcker, R.C.; Osorio, S.; Rodrigues, R. Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Appl. Energy 2021, 293, 116914. [Google Scholar] [CrossRef]
- Chiu, C.L.; Chang, T.H. What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries? Renew. Sustain. Energy Rev. 2009, 13, 1669–1674. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Y.J. Has carbon emissions trading system promoted non-fossil energy development in China? Appl. Energy 2021, 302, 117613. [Google Scholar] [CrossRef]
- Lin, B.; Jia, Z. Is emission trading scheme an opportunity for renewable energy in China? A perspective of ETS revenue redistributions. Appl. Energy 2020, 263, 114605. [Google Scholar] [CrossRef]
- National Carbon Market Development Report 2024. Available online: https://www.mee.gov.cn/ywdt/xwfb/202407/W020240722528848347594.pdf (accessed on 15 January 2025).
- The Trading Price of the National Carbon Market Rose Steadily. Available online: https://news.qq.com/rain/a/20250113A053Y100 (accessed on 16 January 2025).
- Yu, M.; He, M.; Liu, F. Impact of emissions trading system on renewable energy output. Procedia Comput. Sci. 2017, 122, 221–228. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, M.; Lu, W.; Lin, S. Shared-constraint approach for multi-leader multi-follower game of generation companies participating in electricity markets with carbon emission trading mechanism. J. Clean. Prod. 2022, 350, 131424. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Wu, X.; Nie, X. Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis?—Empirical analysis based on the PSM-DID method. Energy Policy 2019, 129, 930–938. [Google Scholar] [CrossRef]
- Ren, X.; Xiao, Y.; Duan, K.; Urquhart, A. Spillover effects between fossil energy and green markets: Evidence from informational inefficiency. Energy Econ. 2024, 131, 107317. [Google Scholar] [CrossRef]
- Yousaf, I.; Mensi, W.; Vo, X.V.; Kang, S.H. Dynamic spillovers and connectedness between crude oil and green bond markets. Resour. Policy 2024, 89, 104594. [Google Scholar] [CrossRef]
- De Sousa Jabbour, A.B.L.; Luiz, J.V.R.; Luiz, O.R.; Jabbour, C.J.C.; Ndubisi, N.O.; Oliveira, J.H.C.; Junior, F.H. Circular economy business models and operations management. J. Clean. Prod. 2019, 235, 1525–1539. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Chen, Z.; Song, P.; Wang, B. Carbon emissions trading scheme, energy efficiency and rebound effect–Evidence from China’s provincial data. Energy Policy 2021, 157, 112507. [Google Scholar] [CrossRef]
- Jones, C.I.; Tonetti, C. Nonrivalry and the Economics of Data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar]
- Haskel, J.; Westlake, S. Capitalism Without Capital: The Rise of the Intangible Economy; Princeton University Press: Princeton, NJ, USA, 2017; Volume 44, pp. 1–288. [Google Scholar]
- Biswas, P.; Rashid, A.; Biswas, A.; Nasim, M.A.A.; Chakraborty, S.; Gupta, K.D.; George, R. AI-driven approaches for optimizing power consumption: A comprehensive survey. Discov. Artif. Intell. 2024, 4, 116. [Google Scholar]
- Li, J.; Chen, L.; Yi, J.; Mao, J.; Liao, J. Ecosystem-specific advantages in international digital commerce. J. Int. Bus. Stud. 2019, 50, 1448–1463. [Google Scholar]
- Meng, X.; Xu, S.; Zhang, J. How does industrial intelligence affect carbon intensity in China? Empirical analysis based on Chinese provincial panel data. J. Clean. Prod. 2022, 376, 134273. [Google Scholar]
- Du, L.; Lin, W. Does the application of industrial robots overcome the Solow paradox? Evidence from China. Technol. Soc. 2022, 68, 101932. [Google Scholar]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.L.; Yang, Z. Can artificial intelligence improve green economic growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar]
- Marwala, T.; Hurwitz, E. Artificial Intelligence and Asymmetric Information Theory. 2015. Available online: https://www.researchgate.net/publication/282906709_Artificial_Intelligence_and_Asymmetric_Information_Theory (accessed on 10 February 2021).
- Xue, L.; Zhang, Q.; Zhang, X.; Li, C. Can digital transformation promote green technology innovation? Sustainability 2022, 14, 7497. [Google Scholar] [CrossRef]
- Irfan, M.; Razzaq, A.; Sharif, A.; Yang, X. Influence mechanism between green finance and green innovation: Exploring regional policy intervention effects in China. Technol. Forecast. Soc. Chang. 2022, 182, 121882. [Google Scholar]
- Rodrigues, A.R.D.; Ferreira, F.A.F.; Teixeira, F.J.; Zopounidis, C. Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Res. Int. Bus. Financ. 2022, 60, 101616. [Google Scholar]
- Kong, T.; Sun, R.J.; Sun, G.; Song, Y. Effects of digital finance on green innovation considering information asymmetry: An empirical study based on Chinese listed firms. Emerg. Mark. Financ. Trade 2022, 58, 4399–4411. [Google Scholar]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar]
- Lyu, W.; Liu, J. Artificial Intelligence and emerging digital technologies in the energy sector. Appl. Energy 2021, 303, 117615. [Google Scholar]
- Ghoddusi, H.; Creamer, G.G.; Rafizadeh, N. Machine learning in energy economics and finance: A review. Energy Econ. 2019, 81, 709–727. [Google Scholar]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef]
- Mischos, S.; Dalagdi, E.; Vrakas, D. Intelligent energy management systems: A review. Artif. Intell. Rev. 2023, 56, 11635–11674. [Google Scholar]
- Yang, G.; Zhang, G.; Cao, D.; Gao, D.; Wang, X.; Yang, S.; Jiang, P.; Zha, D.; Shan, Y. A comprehensive city-level final energy consumption dataset including renewable energy for China, 2005–2021. Sci. Data 2024, 11, 738. [Google Scholar]
- Chen, J.; Liu, J.; Qi, J.; Gao, M.; Cheng, S.; Li, K.; Xu, C. City-and county-level spatio-temporal energy consumption and efficiency datasets for China from 1997 to 2017. Sci. Data 2022, 9, 101. [Google Scholar]
- Li, L.; Shan, Y.; Lei, Y.; Wu, S.; Yu, X.; Lin, X.; Chen, Y. Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration. Appl. Energy 2019, 244, 36–45. [Google Scholar]
- Liu, Q.; Cheng, K.; Zhuang, Y. Estimation of city energy consumption in China based on downscaling energy balance tables. Energy 2022, 256, 124658. [Google Scholar]
- Huo, D.; Zhang, X.; Meng, S.; Wu, G.; Li, J.; Di, R. Green finance and energy efficiency: Dynamic study of the spatial externality of institutional support in a digital economy by using hidden Markov chain. Energy Econ. 2022, 116, 106431. [Google Scholar]
- Hurwicz, L. On Informationally Decentralized Systems. In Decision and Organization: A Volume in Honor of Jacob Marschak; Radner, R., McGuire, C.B., Eds.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1972; pp. 297–336. [Google Scholar]
- Chakraborty, P.; Chatterjee, C. Does environmental regulation indirectly induce upstream innovation? New evidence from India. Res. Policy 2017, 46, 939–955. [Google Scholar] [CrossRef]
- Hawk, A.; Pacheco-de-Almeida, G. Time compression (dis) economies: An empirical analysis. Strateg. Manag. J. 2018, 39, 2489–2516. [Google Scholar] [CrossRef]
- Huo, D.; Gu, W.; Guo, D.; Tang, A. The service trade with AI and energy efficiency: Multiplier effect of the digital economy in a green city by using quantum computation based on QUBO modeling. Energy Econ. 2024, 140, 107976. [Google Scholar] [CrossRef]
Variable Type | Title 2 | Title 3 | Title 4 | |
---|---|---|---|---|
Dependent variable | Regional energy consumption | Regional energy consumption (tons of standard coal) divide by area of administrative division (with normalization) | lnenergy | Yang et al. [54] |
Regional energy transformation level | Total energy consumption of wind power, hydropower, solar energy/total energy consumption | renewable | Yang et al. [54] | |
Independent variable | Carbon trading cities | 1 for carbon credit-trading cities after the policy shock point and 0 for non-carbon credit-trading cities | CET | Provincial government networks |
Regional artificial intelligence levels | Logarithmic value of the number of AI firms (with normalization) | AI | Regional statistical offices | |
CET cities and artificial intelligence compound role | The interaction term of CET city variables and regional AI levels | CET*AI | work out | |
Control variable | Regional transportation levels | Logarithmic road passenger traffic (ten thousand people) | lntrans | Regional statistical offices |
Level of regional economic development | Logarithmic value of gross regional product (ten thousand CNY) | lnGDP | ||
Regional openness | Logarithmic value of the amount of foreign capital actually utilized (ten thousand USD) | lnfdi | ||
Level of regional urbanization | Logarithmic value of the number of urban private and self-employed persons (ten thousand people) | lnurb | ||
Regional consumption levels | Logarithmic value of total merchandise sales of wholesale and retail trade above the limit (ten thousand CNY) | lnconsume | ||
Regional emphasis on science and technology | Logarithm of regional science expenditure (ten thousand CNY) | lnsciout | ||
Regional industrial structure | Share of secondary industry value-added in total regional value-added | secper |
Variable | N | Mean | Std.dev | Min | Max |
---|---|---|---|---|---|
CET | 2358 | 0.201 | 0.401 | 0 | 1 |
re | 2358 | 0.0674 | 0.0494 | 0.00673 | 0.264 |
lnenergy | 2358 | 0.435 | 0.189 | 0 | 1 |
AI | 2358 | 0.476 | 0.150 | 0 | 1 |
lnsciout | 2358 | 10.66 | 1.429 | 6.624 | 15.53 |
secper | 2358 | 0.441 | 0.104 | 0.107 | 0.794 |
lnGDPlntrans | 2358 | 16.77 | 0.905 | 14.54 | 19.88 |
2358 | 8.066 | 1.117 | 2.303 | 12.18 | |
lnfdi | 2358 | 10.01 | 2.064 | 1.099 | 14.94 |
lnurb | 2358 | 3.852 | 0.979 | 0.0200 | 7.119 |
lnconsume | 2358 | 15.68 | 1.460 | 5.333 | 21.21 |
Variable/Year | Energy Consumption | Energy Transformation | ||
---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | |
2013 | 0.307 | 0.000 | −0.118 | 0.000 |
2014 | 0.312 | 0.000 | −0.139 | 0.000 |
2015 | 0.310 | 0.000 | −0.144 | 0.000 |
2016 | 0.303 | 0.000 | −0.150 | 0.000 |
2017 | 0.305 | 0.000 | −0.131 | 0.000 |
2018 | 0.305 | 0.000 | −0.126 | 0.000 |
2019 | 0.307 | 0.000 | −0.124 | 0.000 |
2020 | 0.305 | 0.000 | −0.122 | 0.000 |
2021 | 0.313 | 0.000 | −0.115 | 0.000 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Model 1 | Model 2 | Model 3 | Model 4 |
CET | −0.0228 *** | 0.0145 * | −0.0210 *** | 0.0218 *** |
(−6.2684) | (1.7304) | (−8.7450) | (3.5348) | |
AI | 0.0010 | −0.0157 | 0.0166 | −0.0001 |
(0.0203) | (−0.3377) | (0.6768) | (−0.0023) | |
CET×AI | −0.0739 *** | −0.0855 *** | ||
(−4.5536) | (−7.6374) | |||
lntrans | −0.0026 * | −0.0030 ** | −0.0026 *** | −0.0030 *** |
(−1.7164) | (−2.0420) | (−2.6564) | (−3.1777) | |
lnGDP | 0.0831 *** | 0.0872 *** | 0.0892 *** | 0.0944 *** |
(6.2843) | (6.6279) | (23.6826) | (24.9388) | |
lnfdi | 0.0001 | −0.0002 | −0.0000 | −0.0003 |
(0.0527) | (−0.1464) | (−0.0431) | (−0.4900) | |
lnurb | 0.0018 | 0.0021 | 0.0015 | 0.0018 |
(0.9110) | (1.0823) | (1.3393) | (1.5967) | |
lnconsume | 0.0024 * | 0.0021 | 0.0026 *** | 0.0022 ** |
(1.7212) | (1.5372) | (2.6895) | (2.2822) | |
lnsciout | −0.0045 ** | −0.0043 ** | −0.0035 *** | −0.0034 *** |
(−2.3529) | (−2.2724) | (−3.5272) | (−3.4893) | |
secper | 0.3196 *** | 0.3186 *** | 0.3081 *** | 0.3037 *** |
(8.8094) | (8.8568) | (24.8606) | (24.6741) | |
W×CET | 0.0066 | −0.0063 | ||
(0.9312) | (−0.3681) | |||
W×AI | −0.2184 *** | −0.2441 *** | ||
(−3.2611) | (−3.6475) | |||
W×CET×AI | 0.0411 | |||
(1.4545) | ||||
W×lntrans | −0.0033 | −0.0031 | ||
(−1.3285) | (−1.2503) | |||
W×lnGDP | 0.0604 *** | 0.0497 *** | ||
(6.0649) | (4.9371) | |||
W×lnfdi | 0.0016 | 0.0020 | ||
(1.1342) | (1.4043) | |||
W×lnurb | 0.0056 ** | 0.0066 ** | ||
(2.0527) | (2.4330) | |||
W×lnconsume | 0.0013 | 0.0011 | ||
(0.5782) | (0.4854) | |||
W×lnsciout | 0.0051 * | 0.0058 ** | ||
(1.9595) | (2.2155) | |||
W×secper | 0.1331 *** | 0.1497 *** | ||
(3.8185) | (4.3261) | |||
cons | −1.0720 *** | −1.1245 *** | ||
(−5.2593) | (−5.5385) | |||
Rho | −0.1766 *** | −0.1633 *** | ||
(−4.5507) | (−4.2094) | |||
0.9895 | 0.9897 | 0.2553 | 0.1727 | |
0.0003 *** | 0.0003 *** | |||
(34.2487) | (34.2620) | |||
N | 2358 | 2358 | 2358 | 2358 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
CET | −0.0212 *** | 0.0092 | −0.0119 * |
(−8.5384) | (1.5191) | (−1.8840) | |
AI | 0.0206 | −0.1950 *** | −0.1744 *** |
(0.8639) | (−3.4324) | (−3.0510) | |
lntrans | −0.0024 *** | −0.0024 | −0.0048 ** |
(−2.5863) | (−1.0229) | (−1.9925) | |
lnGDP | 0.0881 *** | 0.0387 *** | 0.1268 *** |
(23.7500) | (4.6254) | (14.1242) | |
lnfdi | −0.0001 | 0.0015 | 0.0015 |
(−0.1047) | (1.1662) | (1.0753) | |
lnurb | 0.0015 | 0.0045 * | 0.0060 ** |
(1.2945) | (1.9464) | (2.4783) | |
lnconsume | 0.0026 ** | 0.0008 | 0.0033 |
(2.5482) | (0.3802) | (1.6128) | |
lnsciout | −0.0037 *** | 0.0052 ** | 0.0016 |
(−3.7089) | (2.4298) | (0.6402) | |
secper | 0.3074 *** | 0.0670 ** | 0.3744 *** |
(25.3908) | (2.3306) | (12.5110) |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variable | Model 5 | Model 6 | Model 7 | Model 8 |
CET | 0.0073 ** | 0.0201 *** | 0.0063 *** | 0.0166 *** |
(2.0801) | (3.5566) | (5.4070) | (5.4896) | |
AI | 0.0062 | 0.0005 | 0.0133 | 0.0083 |
(0.3344) | (0.0272) | (1.1088) | (0.6909) | |
CET×AI | −0.0253 * | −0.0198 *** | ||
(−1.6587) | (−3.6041) | |||
lntrans | 0.0004 | 0.0003 | 0.0002 | 0.0001 |
(0.4089) | (0.2741) | (0.5096) | (0.3103) | |
lnGDP | 0.0120 *** | 0.0134 *** | 0.0131 *** | 0.0141 *** |
(4.1051) | (4.8894) | (7.1343) | (7.5509) | |
lnfdi | 0.0010 * | 0.0009 * | 0.0007 *** | 0.0007 *** |
(1.8963) | (1.8274) | (2.9265) | (2.7519) | |
lnurb | −0.0009 | −0.0008 | −0.0009 * | −0.0008 |
(−0.9470) | (−0.8465) | (−1.6678) | (−1.4635) | |
lnconsume | −0.0020 ** | −0.0021 ** | −0.0020 *** | −0.0021 *** |
(−2.2309) | (−2.2739) | (−4.2631) | (−4.4920) | |
lnsciout | 0.0011 | 0.0011 | 0.0012 ** | 0.0013 *** |
(1.2555) | (1.3584) | (2.4565) | (2.6096) | |
secper | −0.0658 *** | −0.0661 *** | −0.0637 *** | −0.0637 *** |
(−5.7538) | (−5.7591) | (−10.5567) | (−10.5377) | |
W×CET | −0.0101 *** | 0.0000 | ||
(−2.9316) | (0.0039) | |||
W×AI | 0.2267 *** | 0.2134 *** | ||
(6.9422) | (6.4850) | |||
W×CET×AI | −0.0141 | |||
(−1.0177) | ||||
W×lntrans | −0.0008 | −0.0010 | ||
(−0.6438) | (−0.7914) | |||
W×lnGDP | 0.0164 *** | 0.0154 *** | ||
(3.5028) | (3.2464) | |||
W× lnfdi | −0.0029 *** | −0.0028 *** | ||
(−4.0633) | (−3.9822) | |||
W×lnurb | −0.0018 | −0.0014 | ||
(−1.3466) | (−1.0857) | |||
W×lnconsume | −0.0032 *** | −0.0034 *** | ||
(−2.9955) | (−3.1214) | |||
lnsciout | 0.0006 | 0.0011 | ||
(0.5052) | (0.8271) | |||
secper | −0.0108 | −0.0058 | ||
(−0.6922) | (−0.3706) | |||
cons | −0.0988 ** | −0.1168 *** | ||
(−2.1051) | (−2.7248) | |||
Rho | −0.2449 *** | −0.2508 *** | ||
(−6.2292) | (−6.3772) | |||
0.9639 | 0.9642 | 0.6748 | 0.6783 | |
0.0001 *** | 0.0001 *** | |||
(34.2099) | (34.2034) | |||
N | 2358 | 2358 | 2358 | 2358 |
Variable | Direct Effect | Indirect Effect | Total Effect |
---|---|---|---|
CET | 0.0067 *** | −0.0096 *** | −0.0028 |
(5.5367) | (−3.3721) | (−0.9740) | |
AI | 0.0058 | 0.1858 *** | 0.1916 *** |
(0.4943) | (6.9508) | (7.2499) | |
lntrans | 0.0003 | −0.0006 | −0.0003 |
(0.6882) | (−0.5968) | (−0.3008) | |
lnGDP | 0.0126 *** | 0.0108 *** | 0.0234 *** |
(6.9690) | (2.8329) | (5.7930) | |
lnfdi | 0.0008 *** | −0.0025 *** | −0.0017 *** |
(3.4077) | (−4.0980) | (−2.6353) | |
lnurb | −0.0008 | −0.0014 | −0.0022 ** |
(−1.5070) | (−1.2537) | (−1.9737) | |
lnconsume | −0.0019 *** | −0.0023 ** | −0.0042 *** |
(−3.8709) | (−2.4277) | (−4.4166) | |
lnsciout | 0.0012 ** | 0.0004 | 0.0016 |
(2.4179) | (0.3968) | (1.3729) | |
secper | −0.0634 *** | 0.0033 | −0.0601 *** |
(−10.6705) | (0.2475) | (−4.4387) |
Variable | 25% | 50% | 75% | 90% |
---|---|---|---|---|
−0.0753 *** | −0.0451 *** | 0.0093 | 0.0959 ** | |
(−6.3238) | (−2.5843) | (0.7409) | (2.5227) | |
0.0828 *** | 0.0810 *** | 0.0481 *** | 0.0010 | |
(10.1127) | (8.7841) | (6.0270) | (0.0558) | |
AI | 0.0941 *** | 0.1624 *** | 0.2291 *** | 0.1537 *** |
(10.1048) | (9.6107) | (10.7776) | (6.0485) | |
cons | 0.1750 *** | 0.2442 *** | 0.2938 *** | 0.2067 *** |
(8.0869) | (6.8395) | (6.0550) | (2.6754) | |
Controls | Yes | Yes | Yes | Yes |
N | 2358 | 2358 | 2358 | 2358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, D.; Sun, T.; Gu, W.; Qiao, L. Smart Cities with Green Resilience: A Quasi-Natural Experiment Based on Artificial Intelligence. Smart Cities 2025, 8, 67. https://doi.org/10.3390/smartcities8020067
Huo D, Sun T, Gu W, Qiao L. Smart Cities with Green Resilience: A Quasi-Natural Experiment Based on Artificial Intelligence. Smart Cities. 2025; 8(2):67. https://doi.org/10.3390/smartcities8020067
Chicago/Turabian StyleHuo, Da, Tianying Sun, Wenjia Gu, and Li Qiao. 2025. "Smart Cities with Green Resilience: A Quasi-Natural Experiment Based on Artificial Intelligence" Smart Cities 8, no. 2: 67. https://doi.org/10.3390/smartcities8020067
APA StyleHuo, D., Sun, T., Gu, W., & Qiao, L. (2025). Smart Cities with Green Resilience: A Quasi-Natural Experiment Based on Artificial Intelligence. Smart Cities, 8(2), 67. https://doi.org/10.3390/smartcities8020067