Technologies for New Mobility Services: Opportunities and Challenges from the Perspective of Stakeholders
Abstract
Highlights
- European stakeholders identify technology in NMS as a key driver for improving modal integration, user experience, and proximity of transport services.
- Investors show higher overall optimism regarding the role of technology in NMS, yet they prioritize different NMS as the primary beneficiaries.
- Addressing regulatory and infrastructure challenges is essential to maximize technology’s impact on both mobility attributes and the performance of NMS.
- Cross-sector collaboration and alignment of investment strategies are essential to ensure coordinated efforts toward sustainable and inclusive urban mobility futures.
Abstract
1. Introduction
2. Review of Technologies and Stakeholders in NMS
2.1. Technologies of NMS
2.2. Main Stakeholders Within NMS
3. Methodology
3.1. Phase 1—Survey Definition
- (i)
- Questions about Technical Innovation Drivers
- (ii)
- Professional Background
3.2. Phase 2—Data Collection Campaign
3.3. Phase 3—Data Analysis
4. Findings and Discussion
4.1. Potential of Technologies to Boost NMS
4.2. Challenges to Fostering the Integration of Technical Innovations into NMS
4.3. Impact of Cutting-Edge Technologies on Mobility Attributes of NMS
4.4. NMS Most Benefited from Technical Innovations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NMS | New Mobility Services |
MaaS | Mobility as a Service |
ICT | Information and Communication Technologies |
DRT | Demand-responsive transport |
EU | European Union |
AR | Augmented Reality |
VR | Virtual Reality |
GEMINI | Greening European Mobility through Cascading Innovation Initiatives |
U-test | Wilcoxon–Mann–Whitney test |
Appendix A. Wilcoxon–Mann–Whitney Test Results (U-Test)
Stakeholder 1 | Stakeholder 2 | 1. IoT and Smart City Infrastructure | 2. Advanced Fleet Monitoring and Management Solutions | 3. Connected, Cooperative and Autonomous Vehicles | 4. Electric Vehicles | 5. Hydrogen Fuel Cells | 6. Alternative Fuels | 7. Big Data, AI and Machine Learning Techniques | 8. Cloud and Edge Computing Services | 9. Quantum Computing | 10. Augmented Reality (AR) and Virtual Reality (VR) | 11. Computer Vision | 12. Biometric Authentication Payments | 13. Blockchain Technology (for Data Integrity) | 14. Data Spaces (for Trusted and Secure Data Sharing) | 15. Smart Contracts | 16. Tokenization | 17. Zero Trust Architectures Systems |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ancillary Services of Mobility Services | Consultancy firm | 0.39 | 0.55 | 0.03 ** | 0.51 | 0.62 | 0.96 | 0.78 | 0.58 | 0.16 | 0.18 | 0.07 * | 0.52 | 0.41 | 0.76 | 1.00 | 0.67 | 0.13 |
Government and Regulation Bodies | 0.07 * | 0.92 | 0.06 * | 0.79 | 0.70 | 0.62 | 0.16 | 0.70 | 0.63 | 0.36 | 0.24 | 0.69 | 0.76 | 0.40 | 0.54 | 0.22 | 0.93 | |
Infrastructure Manager and Providers | 0.91 | 0.50 | 1.00 | 0.73 | 0.59 | 0.23 | 0.04 ** | 0.63 | 0.68 | 0.40 | 0.46 | 0.65 | 0.05 * | 0.10 * | 0.02 ** | 0.21 | 0.36 | |
Investors and Financial Institutions | 0.41 | 1.00 | 0.56 | 0.15 | 0.13 | 0.03 ** | 0.80 | 0.71 | 0.04 ** | 0.52 | 0.66 | 0.76 | 0.19 | 0.42 | 0.17 | 0.09 * | 0.90 | |
Mobility Operators | 0.98 | 0.80 | 0.62 | 0.65 | 0.59 | 0.21 | 0.83 | 0.39 | 0.45 | 0.25 | 0.02 ** | 0.87 | 0.95 | 0.85 | 0.76 | 0.92 | 0.58 | |
Others | 0.63 | 0.84 | 0.67 | 0.72 | 0.99 | 0.40 | 0.29 | 0.87 | 0.25 | 0.76 | 0.25 | 0.95 | 0.28 | 0.08 * | 0.24 | 0.42 | 0.62 | |
Research, Academia and Think Tank | 0.99 | 0.97 | 0.50 | 0.43 | 0.73 | 0.12 | 0.13 | 0.34 | 0.60 | 0.51 | 0.44 | 0.86 | 0.31 | 0.37 | 0.56 | 0.86 | 0.66 | |
Consultancy firm | Government and Regulation Bodies | 0.46 | 0.63 | 0.48 | 0.31 | 0.76 | 0.75 | 0.41 | 0.75 | 0.08 * | 0.43 | 0.26 | 0.34 | 0.63 | 0.36 | 0.64 | 0.16 | 0.16 |
Infrastructure Manager and Providers | 0.33 | 0.93 | 0.02 ** | 0.77 | 0.24 | 0.28 | 0.04 ** | 0.93 | 0.17 | 0.70 | 0.52 | 0.88 | 0.44 | 0.09 * | 0.05 ** | 0.21 | 0.03 ** | |
Investors and Financial Institutions | 0.08 * | 0.51 | 0.04 ** | 0.42 | 0.02 ** | 0.04 ** | 0.96 | 0.77 | 0.00 *** | 0.03 ** | 0.22 | 0.70 | 0.70 | 0.33 | 0.24 | 0.06 * | 0.11 | |
Mobility Operators | 0.39 | 0.38 | 0.05 ** | 0.85 | 1.00 | 0.30 | 0.91 | 0.16 | 0.77 | 0.70 | 0.84 | 0.35 | 0.53 | 0.91 | 0.84 | 0.77 | 0.52 | |
Others | 0.14 | 0.64 | 0.03 ** | 0.73 | 0.41 | 0.47 | 0.23 | 0.45 | 0.97 | 0.26 | 0.41 | 0.43 | 0.90 | 0.06 * | 0.36 | 0.32 | 0.04 ** | |
Research, Academia and Think Tank | 0.33 | 0.42 | 0.06 * | 0.98 | 0.33 | 0.13 | 0.12 | 0.91 | 0.05 ** | 0.30 | 0.01 ** | 0.41 | 0.97 | 0.20 | 0.64 | 0.59 | 0.04 ** | |
Government and Regulation Bodies | Infrastructure Manager and Providers | 0.05 ** | 0.58 | 0.04 ** | 0.47 | 0.19 | 0.17 | 0.00 *** | 0.89 | 0.91 | 0.83 | 0.96 | 0.49 | 0.11 | 0.19 | 0.10 * | 0.68 | 0.31 |
Investors and Financial Institutions | 0.00 *** | 0.86 | 0.12 | 0.07 * | 0.00 *** | 0.00 *** | 0.22 | 0.92 | 0.03 ** | 0.05 ** | 0.54 | 0.49 | 0.32 | 0.88 | 0.44 | 0.58 | 0.84 | |
Mobility Operators | 0.06 * | 0.66 | 0.11 | 0.45 | 0.81 | 0.06 * | 0.31 | 0.12 | 0.31 | 0.69 | 0.10 * | 0.95 | 0.71 | 0.37 | 0.77 | 0.20 | 0.61 | |
Others | 0.01 *** | 0.95 | 0.07 * | 0.47 | 0.34 | 0.35 | 0.01 *** | 0.46 | 0.11 | 0.56 | 0.99 | 0.82 | 0.45 | 0.14 | 0.64 | 0.63 | 0.54 | |
Research, Academia and Think Tank | 0.03 ** | 0.79 | 0.12 | 0.23 | 0.33 | 0.06 * | 0.00 *** | 0.48 | 0.72 | 0.72 | 0.02 ** | 0.81 | 0.50 | 0.65 | 1.00 | 0.32 | 0.63 | |
Infrastructure Manager and Providers | Investors and Financial Institutions | 0.50 | 0.43 | 0.48 | 0.28 | 0.33 | 0.26 | 0.01 ** | 0.98 | 0.05 * | 0.11 | 0.83 | 0.83 | 0.60 | 0.39 | 0.30 | 1.00 | 0.48 |
Mobility Operators | 0.88 | 0.33 | 0.57 | 0.97 | 0.24 | 0.03 ** | 0.04 ** | 0.11 | 0.44 | 0.94 | 0.34 | 0.43 | 0.14 | 0.07 * | 0.05 ** | 0.21 | 0.23 | |
Others | 0.75 | 0.57 | 0.61 | 0.99 | 0.43 | 0.57 | 0.25 | 0.39 | 0.25 | 0.54 | 0.84 | 0.56 | 0.41 | 0.86 | 0.19 | 0.44 | 0.64 | |
Research, Academia and Think Tank | 0.87 | 0.35 | 0.46 | 0.74 | 0.75 | 0.70 | 0.32 | 0.63 | 0.75 | 0.65 | 0.19 | 0.58 | 0.33 | 0.59 | 0.12 | 0.31 | 0.61 | |
Investors and Financial Institutions | Mobility Operators | 0.37 | 0.82 | 0.93 | 0.31 | 0.02 ** | 0.00 *** | 1.00 | 0.18 | 0.03 ** | 0.04 ** | 0.08 * | 0.59 | 0.26 | 0.33 | 0.28 | 0.08 * | 0.49 |
Others | 0.66 | 0.82 | 0.85 | 0.23 | 0.02 ** | 0.05 ** | 0.15 | 0.47 | 0.00 *** | 0.27 | 0.56 | 0.69 | 0.78 | 0.32 | 0.77 | 0.33 | 0.76 | |
Research, Academia and Think Tank | 0.34 | 0.99 | 0.95 | 0.38 | 0.13 | 0.51 | 0.05 * | 0.66 | 0.14 | 0.10 * | 0.16 | 0.62 | 0.68 | 0.88 | 0.42 | 0.12 | 0.79 | |
Mobility Operators | Others | 0.60 | 0.61 | 0.93 | 0.92 | 0.47 | 0.05 ** | 0.23 | 0.38 | 0.80 | 0.38 | 0.17 | 0.86 | 0.36 | 0.04 ** | 0.42 | 0.40 | 0.32 |
Research, Academia and Think Tank | 0.97 | 0.80 | 0.89 | 0.78 | 0.30 | 0.01 ** | 0.11 | 0.02 ** | 0.20 | 0.49 | 0.00 *** | 0.86 | 0.39 | 0.18 | 0.77 | 0.78 | 0.31 | |
Others | Research, Academia and Think Tank | 0.56 | 0.74 | 0.79 | 0.66 | 0.67 | 0.25 | 0.76 | 0.14 | 0.05 ** | 0.76 | 0.02 ** | 1.00 | 0.90 | 0.40 | 0.64 | 0.62 | 0.97 |
Stakeholder 1 | Stakeholder 2 | 1. User experience, Customer Satisfaction, and Quality of Service | 2. Modal Integration | 3. Accessibility and Proximity of Transport Services to People | 4. Economic Efficiency | 5. Environmental Sustainability | 6. Affordability | 7. Equity and Social Inclusion | 8. Safety | 9. Security |
---|---|---|---|---|---|---|---|---|---|---|
Ancillary Services of Mobility Services | Consultancy firm | 0.74 | 0.23 | 0.54 | 0.74 | 0.18 | 0.60 | 0.29 | 0.49 | 0.50 |
Government and Regulation Bodies | 0.56 | 0.55 | 0.99 | 0.59 | 0.18 | 0.46 | 0.19 | 0.27 | 0.28 | |
Infrastructure Manager and Providers | 0.74 | 0.50 | 0.83 | 0.66 | 0.48 | 1.00 | 0.48 | 0.04 ** | 0.01 *** | |
Investors and Financial Institutions | 0.89 | 0.99 | 0.66 | 0.43 | 0.06 * | 0.38 | 0.07 * | 0.91 | 0.81 | |
Mobility Operators | 0.94 | 0.23 | 0.47 | 0.99 | 0.83 | 0.46 | 0.83 | 0.81 | 0.51 | |
Others | 0.76 | 0.19 | 0.60 | 0.54 | 0.86 | 0.04 ** | 0.70 | 0.63 | 0.63 | |
Research, Academia and Think Tank | 0.25 | 0.62 | 0.47 | 0.80 | 0.97 | 0.05 * | 0.43 | 0.58 | 0.44 | |
Consultancy firm | Government and Regulation Bodies | 0.95 | 0.39 | 0.55 | 0.82 | 0.64 | 0.22 | 0.92 | 0.81 | 0.80 |
Infrastructure Manager and Providers | 0.58 | 0.42 | 0.74 | 0.96 | 0.50 | 0.61 | 0.75 | 0.69 | 0.41 | |
Investors and Financial Institutions | 0.85 | 0.21 | 0.82 | 0.86 | 0.79 | 0.92 | 0.42 | 0.48 | 0.56 | |
Mobility Operators | 0.84 | 0.82 | 0.98 | 0.71 | 0.13 | 0.20 | 0.41 | 0.59 | 0.78 | |
Others | 0.93 | 0.55 | 0.24 | 0.38 | 0.13 | 0.06 * | 0.54 | 0.29 | 0.55 | |
Research, Academia and Think Tank | 0.57 | 0.09 * | 0.22 | 0.79 | 0.08 * | 0.05 * | 0.05 * | 0.32 | 0.70 | |
Government and Regulation Bodies | Infrastructure Manager and Providers | 0.33 | 0.92 | 0.85 | 0.89 | 0.67 | 0.47 | 0.81 | 0.25 | 0.05 * |
Investors and Financial Institutions | 0.66 | 0.54 | 0.69 | 0.57 | 0.33 | 0.08 * | 0.24 | 0.35 | 0.53 | |
Mobility Operators | 0.64 | 0.43 | 0.49 | 0.64 | 0.20 | 0.92 | 0.38 | 0.61 | 0.89 | |
Others | 0.78 | 0.52 | 0.58 | 0.22 | 0.13 | 0.12 | 0.48 | 0.15 | 0.73 | |
Research, Academia and Think Tank | 0.47 | 0.22 | 0.51 | 0.81 | 0.08 * | 0.18 | 0.01 ** | 0.09 * | 0.80 | |
Infrastructure Manager and Providers | Investors and Financial Institutions | 0.62 | 0.48 | 0.91 | 0.76 | 0.26 | 0.43 | 0.26 | 0.09 * | 0.03 ** |
Mobility Operators | 0.70 | 0.47 | 0.70 | 0.67 | 0.54 | 0.45 | 0.61 | 0.18 | 0.09 * | |
Others | 0.50 | 0.67 | 0.47 | 0.31 | 0.39 | 0.07 * | 0.81 | 0.02 ** | 0.05 ** | |
Research, Academia and Think Tank | 0.16 | 0.26 | 0.52 | 0.78 | 0.36 | 0.09 * | 0.12 | 0.01 ** | 0.04 ** | |
Investors and Financial Institutions | Mobility Operators | 0.96 | 0.20 | 0.76 | 0.43 | 0.03 ** | 0.11 | 0.10 | 0.78 | 0.69 |
Others | 0.88 | 0.17 | 0.28 | 0.16 | 0.05 ** | 0.01 *** | 0.16 | 0.76 | 0.84 | |
Research, Academia and Think Tank | 0.31 | 0.58 | 0.25 | 0.49 | 0.02 ** | 0.01 *** | 0.01 *** | 0.81 | 0.67 | |
Mobility Operators | Others | 0.84 | 0.64 | 0.17 | 0.52 | 0.77 | 0.35 | 0.80 | 0.51 | 0.81 |
Research, Academia and Think Tank | 0.32 | 0.08 * | 0.17 | 0.82 | 0.79 | 0.43 | 0.30 | 0.54 | 0.96 | |
Others | Research, Academia and Think Tank | 0.35 | 0.06 * | 0.70 | 0.32 | 0.92 | 0.69 | 0.19 | 0.91 | 0.85 |
References
- European Commission. Sustainable and Smart Mobility Strategy—Putting European Transport on Track for the Future. Available online: https://transport.ec.europa.eu/system/files/2021-04/2021-mobility-strategy-and-action-plan.pdf (accessed on 8 June 2025).
- European Commission. Sustainable Transport—New Urban Mobility Framework. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0811 (accessed on 8 June 2025).
- Gössling, S. ICT and Transport Behavior: A Conceptual Review. Int. J. Sustain. Transp. 2018, 12, 153–164. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Downie, A.T.; Mathews, S.; Fatima, S.; MacPherson, J.; Behara, K.N.S.; Paz, A. Digital Technologies of Transportation-Related Communication: Review and the State-of-the-Art. Transp. Res. Interdiscip. Perspect. 2024, 23, 100987. [Google Scholar] [CrossRef]
- Bachechi, C.; Po, L.; Rollo, F. Big Data Analytics and Visualization in Traffic Monitoring. Big Data Res. 2022, 27, 100292. [Google Scholar] [CrossRef]
- Silveira-Santos, T.; Manuel Vassallo, J.; Torres, E. Using Machine Learning Models to Predict the Willingness to Carry Lightweight Goods by Bike and Kick-Scooter. Transp. Res. Interdiscip. Perspect. 2022, 13, 100568. [Google Scholar] [CrossRef]
- Yamamoto, S.; Mori, H. Human Interface and the Management of Information. Designing Information. In Proceedings of the Thematic Area, HIMI 2020 Held as Part of the 22nd International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020. [Google Scholar]
- Bian, Z.; Zuo, F.; Gao, J.; Chen, Y.; Chandra, S.S.; Venkata, P.; Bernardes, S.D.; Ozbay, K.; Ban, X.; Wang, J. Time Lag Effects of COVID-19 Policies on Transportation Systems: A Comparative Study of New York City and Seattle. Transp. Res. Part A Policy Pract. 2021, 145, 269–283. [Google Scholar] [CrossRef]
- Murshed, M. An Empirical Analysis of the Non-Linear Impacts of ICT-Trade Openness on Renewable Energy Transition, Energy Efficiency, Clean Cooking Fuel Access and Environmental Sustainability in South Asia. Environ. Sci. Pollut. Res. 2020, 27, 36254–36281. [Google Scholar] [CrossRef]
- Shibayama, T.; Emberger, G. New Mobility Services: Taxonomy, Innovation and the Role of ICTs. Transp. Policy 2020, 98, 79–90. [Google Scholar] [CrossRef]
- Mubiru, I.; Westerholt, R. A Scoping Review on the Conceptualisation and Impacts of New Mobility Services. Eur. Transp. Res. Rev. 2024, 16, 12. [Google Scholar] [CrossRef]
- Agarwal, P.; Alam, M.A. Use of ICT for Sustainable Transportation. IOP Conf. Ser. Earth Environ. Sci. 2018, 150, 012032. [Google Scholar] [CrossRef]
- Gioldasis, C.; Christoforou, Z. Smart Infrastructure for Shared Mobility. In Advances in Mobility-as-a-Service Systems, Proceedings of the 5th Conference on Sustainable Urban Mobility, CSUM2020, Virtual, 17–19 June 2020; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Trubia, S.; Severino, A.; Curto, S.; Arena, F.; Pau, G. Smart Roads: An Overview of What Future Mobility Will Look Like. Infrastructures 2020, 5, 107. [Google Scholar] [CrossRef]
- Ibáñez, J.A.G.; Zeadally, S.; Contreras-Castillo, J. Integration Challenges of Intelligent Transportation Systems with Connected Vehicle, Cloud Computing, and Internet of Things Technologies. IEEE Wirel. Commun. 2015, 22, 122–128. [Google Scholar] [CrossRef]
- Nikolayev, N.N. The Internet of Things in Transport Technology Improvement and Project Learning. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1083, 012068. [Google Scholar] [CrossRef]
- Khalifa, A.; Kermorgant, O.; Dominguez, S.; Martinet, P. Platooning of Car-Like Vehicles in Urban Environments: An Observer-Based Approach Considering Actuator Dynamics and Time Delays. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5684–5696. [Google Scholar] [CrossRef]
- Anwar, N.; Among Praja, A.K.; Akbar, H.; Adhikara, M.F.A.; Rasjidin, R.; Adhy, D.R. Review Literature Performance: Quality of Service from Internet of Things for Transportation System. In Proceedings of the 2021 1st International Conference on Computer Science and Artificial Intelligence, ICCSAI 2021, Jakarta, Indonesia, 28 October 2021; Volume 1, pp. 444–450. [Google Scholar] [CrossRef]
- Khan, A.R.; Jamlos, M.F.; Osman, N.; Ishak, M.I.; Dzaharudin, F.; Yeow, Y.K.; Khairi, K.A. DSRC Technology in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) IoT System for Intelligent Transportation System (ITS): A Review. In Recent Trends in Mechatronics Towards Industry 4.0: Selected Articles from IM3F 2020, Malaysia; Springer: Berlin/Heidelberg, Germany, 2020; pp. 97–106. [Google Scholar]
- Dikshit, S.; Atiq, A.; Shahid, M.; Dwivedi, V.; Thusu, A. The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas. EAI Endorsed Trans. Energy Web 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Pérez-Fernández, O.; García-Palomares, J.C. Parking Places to Moped-Style Scooter Sharing Services Using GIS Location-Allocation Models and GPS Data. ISPRS Int. J. Geo-Inf. 2021, 10, 230. [Google Scholar] [CrossRef]
- Arias-Molinares, D.; García-Palomares, J.C.; Gutiérrez, J. Micromobility Services before and after a Global Pandemic: Impact on Spatio-Temporal Travel Patterns. Int. J. Sustain. Transp. 2023, 17, 1058–1073. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Zhu, D.; Sun, H.; Wu, J.; Pan, X.; Li, D. Extreme Unbalanced Mobility Network in Bike Sharing System. Phys. A Stat. Mech. Its Appl. 2021, 563, 125444. [Google Scholar] [CrossRef]
- Baldinelli, A.; Francesconi, M.; Antonelli, M. Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles? Energies 2024, 17, 4728. [Google Scholar] [CrossRef]
- Turner, J.W.G.; Leach, F.C.P. The Role of Alternative and Renewable Liquid Fuels in Environmentally Sustainable Transport; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Golalikhani, M.; Oliveira, B.B.; Carravilla, M.A.; Oliveira, J.F.; Antunes, A.P. Carsharing: A Review of Academic Literature and Business Practices toward an Integrated Decision-Support Framework. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102280. [Google Scholar] [CrossRef]
- Torre-Bastida, A.I.; Del Ser, J.; Laña, I.; Ilardia, M.; Bilbao, M.N.; Campos-Cordobés, S. Big Data for Transportation and Mobility: Recent Advances, Trends and Challenges. IET Intell. Transp. Syst. 2018, 12, 742–755. [Google Scholar] [CrossRef]
- Lee, D.; Camacho, D.; Jung, J.J. Smart Mobility with Big Data: Approaches, Applications, and Challenges. Appl. Sci. 2023, 13, 7244. [Google Scholar] [CrossRef]
- Rosário, A.T.; Dias, J.C. How Has Data-Driven Marketing Evolved: Challenges and Opportunities with Emerging Technologies. Int. J. Inf. Manag. Data Insights 2023, 3, 100203. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Cheng, W. The Key Technologies and Challenges of Mobility as a Service. In Proceedings of the IEEE Conference on Intelligent Transportation Systems, ITSC, Macau, China, 8–12 October 2022; pp. 767–772. [Google Scholar] [CrossRef]
- Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability 2020, 12, 2789. [Google Scholar] [CrossRef]
- Harris, I.; Wang, Y.; Wang, H. ICT in Multimodal Transport and Technological Trends: Unleashing Potential for the Future. Int. J. Prod. Econ. 2015, 159, 88–103. [Google Scholar] [CrossRef]
- Arthurs, P.; Gillam, L.; Krause, P.; Wang, N.; Halder, K.; Mouzakitis, A. A Taxonomy and Survey of Edge Cloud Computing for Intelligent Transportation Systems and Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6206–6221. [Google Scholar] [CrossRef]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum Computing: A Taxonomy, Systematic Review and Future Directions. Softw.-Pract. Exp. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Affia, A.A.O.; Matulevicius, R. Security Risk Management in Shared Mobility Integration. In Proceedings of the ACM International Conference Proceeding Series, Vienna, Austria, 23–26 August 2022. [Google Scholar] [CrossRef]
- Dypvik Landmark, A.; Arnesen, P.; Södersten, C.J.; Hjelkrem, O.A. Mobile Phone Data in Transportation Research: Methods for Benchmarking against Other Data Sources. Transportation 2021, 48, 2883–2905. [Google Scholar] [CrossRef]
- Ranchordás, S. Smart Mobility, Transport Poverty and the Legal Framework of Inclusive Mobility; Springer: Berlin/Heidelberg, Germany, 2020; pp. 61–80. [Google Scholar]
- Jabbar, R.; Dhib, E.; Said, A.B.; Krichen, M.; Fetais, N.; Zaidan, E.; Barkaoui, K. Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review. IEEE Access 2022, 10, 20995–21031. [Google Scholar] [CrossRef]
- Martelli, F.; Renda, M.E.; Zhao, J. The Price of Privacy Control in Mobility Sharing. J. Urban Technol. 2021, 28, 237–262. [Google Scholar] [CrossRef]
- Auer, S.; Nagler, S.; Mazumdar, S.; Mukkamala, R.R. Towards Blockchain-IoT Based Shared Mobility: Car-Sharing and Leasing as a Case Study. J. Netw. Comput. Appl. 2022, 200, 103316. [Google Scholar] [CrossRef]
- Hawlitschek, F.; Notheisen, B.; Teubner, T. The Limits of Trust-Free Systems: A Literature Review on Blockchain Technology and Trust in the Sharing Economy. Electron. Commer. Res. Appl. 2018, 29, 50–63. [Google Scholar] [CrossRef]
- Sun, L.; Hua, G.; Teunter, R.H.; Cheng, T.C.E.; Shen, Z.J.M. The Effects of Tokenization on Ride-Hailing Blockchain Platforms. Prod. Oper. Manag. 2023, 1–18. [Google Scholar] [CrossRef]
- Annabi, M.; Zeroual, A.; Messai, N. Towards Zero Trust Security in Connected Vehicles: A Comprehensive Survey. Comput. Secur. 2024, 145, 104018. [Google Scholar] [CrossRef]
- Vadim, S.; Firdaus, M.; Rhee, K.-H. Privacy-Preserving Decentralized Biometric Identity Verification in Car-Sharing System. J. Multimed. Inf. Syst. 2024, 11, 17–34. [Google Scholar] [CrossRef]
- Li, F.; Trappey, A.J.C.; Lee, C.H.; Li, L. Immersive Technology-Enabled Digital Transformation in Transportation Fields: A Literature Overview. Expert Syst. Appl. 2022, 202, 117459. [Google Scholar] [CrossRef]
- Yildirim, O.; Pidel, C.; West, M. Future Mobility Solutions: A Use Case for Understanding How VR Influences User Perception. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality, AIVR 2020, Utrecht, The Netherlands, 14–18 December 2020; pp. 184–187. [Google Scholar] [CrossRef]
- Prior Filipe, R.; Heath, A.; McCullen, N. The Path to Sustainable and Equitable Mobility: Defining a Stakeholder-Informed Transportation System. Sustainability 2022, 14, 15950. [Google Scholar] [CrossRef]
- Sobrino, N.; Nicolas Gonzalez, J.; Manuel Vassallo, J.; de los Angeles Baeza, M. Regulation of Shared Electric Kick Scooters in Urban Areas: Key Drivers from Expert Stakeholders. Transp. Policy 2023, 134, 1–18. [Google Scholar] [CrossRef]
- Kamargianni, M.; Matyas, M. The Business Ecosystem of Mobility-as-a-Service. In Transportation Research Board (TRB) Annual Meeting; National Academies: Washington, DC, USA, 2017; Volume 96, pp. 8–12. [Google Scholar]
- Polydoropoulou, A.; Pagoni, I.; Tsirimpa, A. Ready for Mobility as a Service? Insights from Stakeholders and End-Users. Travel Behav. Soc. 2020, 21, 295–306. [Google Scholar] [CrossRef]
- Gonzalez, J.N.; Sobrino, N.; Vassallo, J.M. Considering the City Context in Weighting Sustainability Criteria for Last-Mile Logistics Solutions. Int. J. Logist. Res. Appl. 2023, 28, 380–400. [Google Scholar] [CrossRef]
- Wright, S. A European Model for Public Transport Authorities in Small and Medium Urban Areas. J. Public Transp. 2015, 18, 45–60. [Google Scholar] [CrossRef]
- Linde, L.B.A.; Witte, P.A.; Spit, T.J.M. Quiet acceptance vs. the ‘polder model’: Stakeholder involvement in strategic urban mobility plans. Eur. Plan. Stud. 2021, 29, 425–445. [Google Scholar] [CrossRef]
- O’Neill, P. The Role of Public Authorities. Transportation 1990, 17, 313–328. [Google Scholar] [CrossRef]
- López Carreiro, I. MaaS Implementation Pathways: A Multi-Stakeholder Approach; Universidad Politécnica de Madrid: Madrid, Spain, 2021. [Google Scholar]
- McGann, J.G. Think Tanks, Foreign Policy and the Emerging Powers. In Think Tanks, Foreign Policy and the Emerging Powers; Palgrave Macmillan: New York, NY, USA, 2018; pp. 1–456. [Google Scholar]
- Tavoletti, E.; Kazemargi, N.; Cerruti, C.; Grieco, C.; Appolloni, A. Business Model Innovation and Digital Transformation in Global Management Consulting Firms. Eur. J. Innov. Manag. 2021, 25, 612–636. [Google Scholar]
- Zhang, L.; Zhang, J.; Duan, Z.Y.; Bryde, D. Sustainable Bike-Sharing Systems: Characteristics and Commonalities across Cases in Urban China. J. Clean. Prod. 2015, 97, 124–133. [Google Scholar] [CrossRef]
- Amirnazmiafshar, E. Identifying the Gaps Between Needs, Expectations, and Views of Different Stakeholders Related to Car-Sharing, Bike-Sharing, and Scooter-Sharing Systems. Doctoral Dissertation, Politecnico di Torino, Torino, Italy, 2023. [Google Scholar]
- Cruz, C.O.; Sarmento, J.M. “Mobility as a Service” Platforms: A Critical Path towards Increasing the Sustainability of Transportation Systems. Sustainability 2020, 12, 6368. [Google Scholar] [CrossRef]
- Qiao, S.; Huang, G.; Yeh, A.G.-O. Mobility as a Service and Urban Infrastructure: From Concept to Practice. Trans. Urban Data Sci. Technol. 2022, 1, 16–36. [Google Scholar] [CrossRef]
- Sevdari, K.; Calearo, L.; Andersen, P.B.; Marinelli, M. Ancillary Services and Electric Vehicles: An Overview from Charging Clusters and Chargers Technology Perspectives. Renew. Sustain. Energy Rev. 2022, 167, 112666. [Google Scholar] [CrossRef]
- Gulotta, F.; Rancilio, G.; Blaco, A.; Bovera, F.; Merlo, M.; Moncecchi, M.; Falabretti, D. E-Mobility Scheduling for the Provision of Ancillary Services to the Power System. Int. J. Electr. Electron. Eng. Telecommun. 2020, 9, 349–355. [Google Scholar] [CrossRef]
- Weiller, C. E-MOBILITY SERVICES. In New Economic Models for Transport in the Digital Economy. Case Study for Research Council UK Digital Economy Theme; University of Cambridge: Cambridge, UK, 2012. [Google Scholar]
- McKillop, D.; French, D.; Quinn, B.; Sobiech, A.L.; Wilson, J.O.S. Cooperative Financial Institutions: A Review of the Literature. Int. Rev. Financ. Anal. 2020, 71, 101520. [Google Scholar] [CrossRef]
- Teece, D.J. Business Models, Business Strategy and Innovation. Long Range Plann. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Castellanos, S.; Grant-Muller, S.; Wright, K. Technology, Transport, and the Sharing Economy: Towards a Working Taxonomy for Shared Mobility. Transp. Rev. 2022, 42, 318–336. [Google Scholar] [CrossRef]
- Koumoutsidi, A.; Pagoni, I.; Polydoropoulou, A. A New Mobility Era: Stakeholders’ Insights Regarding Urban Air Mobility. Sustainability 2022, 14, 3128. [Google Scholar] [CrossRef]
- Delaere, H.; Basu, S.; Macharis, C.; Keseru, I. Barriers and Opportunities for Developing, Implementing and Operating Inclusive Digital Mobility Services. Eur. Transp. Res. Rev. 2024, 16, 1. [Google Scholar] [CrossRef]
- Lopez-Carreiro, I.; Monzon, A.; Lopez, E. MaaS Implications in the Smart City: A Multi-Stakeholder Approach. Sustainability 2023, 15, 10832. [Google Scholar] [CrossRef]
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef] [PubMed]
- Sabolić, D.; Samuelson, M.B. Mitigating Central Tendency and Acquiescence Biases in Survey Design: A Methodological Exploration with Empirical Evidence. Stud. Humanist. AGH 2024, 23, 115–138. [Google Scholar] [CrossRef]
- South, L.; Saffo, D.; Vitek, O.; Dunne, C.; Borkin, M.A. Effective Use of Likert Scales in Visualization Evaluations: A Systematic Review. Comput. Graph. Forum 2022, 41, 43–55. [Google Scholar] [CrossRef]
- Vassallo, J.M.; Garrido, L. GEMINI_T1.1_Market Analysis and Innovation Drivers_Survey_and_Results. Zenodo. Available online: https://zenodo.org/records/13746801 (accessed on 11 September 2024).
- Hui, E.G.M. Learn R for Applied Statistics; Apress: Singapore, 2019. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 3rd ed.; Wiley: Gainesville, FL, USA, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 21 June 2025).
- Bowden, H.; Hellen, G. A Data Driven, Segmentation Approach to Real World Travel Behaviour Change, Using Incentives and Gamification. In Lecture Notes in Mobility; Müller, B., Meyer, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 173–182. [Google Scholar]
- Casquero, D.; Monzon, A.; García, M.; Martínez, O. Key Elements of Mobility Apps for Improving Urban Travel Patterns: A Literature Review. Futur. Transp. 2022, 2, 1–23. [Google Scholar] [CrossRef]
- Lopez-Carreiro, I.; Monzon, A.; Lopez, E.; Lopez-Lambas, M.E. Urban Mobility in the Digital Era: An Exploration of Travellers’ Expectations of MaaS Mobile-Technologies. Technol. Soc. 2020, 63, 101392. [Google Scholar] [CrossRef]
- Shaheen, S.; Cohen, A.; Martin, E. Smartphone App Evolution and Early Understanding from a Multimodal App User Survey; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 149–164. [Google Scholar] [CrossRef]
Question | Answer Options | Response Format |
---|---|---|
Question 1. In your opinion, please rank the following emerging technologies on their potential to boost NMS |
| 5-point scale Very low to Very high potential Respondents could select “I don’t know this technology” if unfamiliar; in such cases, these responses were excluded from the analysis. |
Question 2. Indicate, in your opinion, which are the greatest challenges to fostering the integration of technical innovations into NMS. |
| Multiple-choice and multiple-answer |
Question 3. In your opinion, how can be the impact of cutting-edge technologies, such as the ones previously described, on the following mobility service-related attributes. |
| 5-point scale Very low to Very high impact |
Question 4. Indicate, in your opinion, which of the following NMS you think could benefit the most from technical innovations. |
| Multiple-choice and multiple-answer |
Challenges | Intercept Coeff (sd.) | Government Coeff (sd.) | Researchers Coeff (sd.) | Consultancy Coeff (sd.) | Investors Coeff (sd.) | Operators Coeff (sd.) | Infrastructure Coeff (sd.) | Ancillary Services Coeff (sd.) | Others Coeff (sd.) |
---|---|---|---|---|---|---|---|---|---|
Regulatory hurdles | 1.145 ** (0.47) | −0.888 * (0.51) | −0.272 (0.45) | −0.374 (0.62) | −0.693 (0.67) | 0.195 (0.61) | 0.069 (0.67) | 0.345 (0.57) | 0.756 (0.52) |
Infrastructure availability | 0.156 (0.42) | −0.491 (0.47) | −0.427 (0.41) | 1.067 * (0.63) | 1.097 (0.70) | 0.451 (0.52) | −0.281 (0.56) | 0.671 (0.51) | 0.241 (0.44) |
Lack of political support/funding from local governments | 0.599 (0.42) | −1.259 ** (0.51) | −0.917 ** (0.42) | −0.520 (0.56) | −1.292 ** (0.65) | −0.025 (0.51) | −0.294 (0.56) | 0.343 (0.49) | −0.114 (0.44) |
Concerns over sharing commercially sensitive data | 0.295 (0.42) | 0.255 (0.47) | −0.025 (0.41) | −0.956 * (0.57) | −1.251 * (0.67) | −1.615 *** (0.56) | 0.048 (0.59) | 0.349 (0.50) | −0.317 (0.43) |
Lack of public awareness on key benefits | −1.188 *** (0.43) | 0.745 (0.48) | 0.036 (0.41) | 1.430 ** (0.60) | 0.233 (0.68) | 1.439 *** (0.55) | −0.170 (0.59) | 0.447 (0.50) | 1.254 *** (0.46) |
Lack of user adoption | −0.240 (0.41) | −0.083 (0.47) | −0.427 (0.40) | 0.562 (0.55) | −0.716 (0.67) | −0.217 (0.51) | −0.097 (0.56) | 0.603 (0.47) | −0.186 (0.43) |
Technology readiness | −1.361 *** (0.46) | 0.002 (0.53) | 0.272 (0.45) | −0.142 (0.64) | 0.406 (0.70) | 0.040 (0.57) | 0.289 (0.62) | 0.288 (0.52) | 0.199 (0.48) |
Lack of technical knowledge and/or human resources | −1.973 *** (0.58) | −0.405 (0.73) | 0.586 (0.56) | 0.434 (0.69) | −0.860 (1.18) | −1.070 (0.82) | 0.667 (0.80) | 1.009 * (0.61) | −0.733 (0.70) |
Challenges | Intercept Coeff (sd.) | Government Coeff (sd.) | Researchers Coeff (sd.) | Consultancy Coeff (sd.) | Investors Coeff (sd.) | Operators Coeff (sd.) | Infrastructure Coeff (sd.) | Ancillary Services Coeff (sd.) | Others Coeff (sd.) |
---|---|---|---|---|---|---|---|---|---|
Maas | 1.199 *** (0.45) | −0.720 (0.49) | 0.246 (0.44) | 0.481 (0.70) | −2.155 *** (0.69) | −0.442 (0.53) | −0.366 (0.59) | 0.110 (0.52) | −0.509 (0.46) |
On-demand microtransit | 0.371 (0.43) | −0.229 (0.48) | 0.041 (0.42) | 1.080 (0.70) | −1.624 ** (0.71) | −0.202 (0.50) | −0.451 (0.56) | −0.362 (0.49) | 0.811 * (0.48) |
Car sharing | 0.032 (0.40) | −0.284 (0.46) | −0.061 (0.39) | 0.192 (0.56) | 0.923 (0.66) | −0.610 (0.51) | 0.469 (0.56) | 0.646 (0.48) | 0.372 (0.43) |
Ridesharing | −0.926 ** (0.42) | −0.326 (0.49) | 0.365 (0.41) | 0.097 (0.56) | 0.233 (0.65) | −0.754 (0.56) | 1.102 (0.59) | 0.734 (0.49) | 0.860 ** (0.43) |
Bike sharing | −0.854 ** (0.42) | 0.098 (0.49) | 0.020 (0.41) | 0.345 (0.56) | 1.077 * (0.63) | 0.165 (0.52) | 0.399 (0.57) | −0.380 (0.51) | 0.384 (0.43) |
Moped scooter sharing | −0.608 (0.53) | −0.934 (0.68) | −1.583 *** (0.60) | −0.157 (0.69) | 0.384 (0.71) | −0.575 (0.63) | 0.202 (0.65) | −0.335 (0.59) | 0.092 (0.55) |
Ride-hailing | −1.167 ** (0.49) | 0.481 (0.53) | −0.027 (0.47) | 0.083 (0.66) | −0.912 (0.89) | −0.804 (0.68) | 0.322 (0.69) | −0.365 (0.61) | −0.273 (0.51) |
Kick scooter sharing | −0.595 (0.59) | −1.214 (0.75) | −0.896 (0.60) | −0.499 (0.75) | 0.595 (0.75) | −1.001 (0.76) | −0.280 (0.76) | −1.160 (0.83) | −0.207 (0.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naranjo, D.; Gonzalez, J.N.; Garrido, L.; Rangel, T.; Vassallo, J.M. Technologies for New Mobility Services: Opportunities and Challenges from the Perspective of Stakeholders. Smart Cities 2025, 8, 152. https://doi.org/10.3390/smartcities8050152
Naranjo D, Gonzalez JN, Garrido L, Rangel T, Vassallo JM. Technologies for New Mobility Services: Opportunities and Challenges from the Perspective of Stakeholders. Smart Cities. 2025; 8(5):152. https://doi.org/10.3390/smartcities8050152
Chicago/Turabian StyleNaranjo, Diana, Juan Nicolas Gonzalez, Laura Garrido, Thais Rangel, and Jose Manuel Vassallo. 2025. "Technologies for New Mobility Services: Opportunities and Challenges from the Perspective of Stakeholders" Smart Cities 8, no. 5: 152. https://doi.org/10.3390/smartcities8050152
APA StyleNaranjo, D., Gonzalez, J. N., Garrido, L., Rangel, T., & Vassallo, J. M. (2025). Technologies for New Mobility Services: Opportunities and Challenges from the Perspective of Stakeholders. Smart Cities, 8(5), 152. https://doi.org/10.3390/smartcities8050152