Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Reference Analyses (K and Ca Contents) and Determination of Soil Texture
2.3. Data Acquisition with XRF and vis–NIR Equipment
2.4. Data Modeling
3. Results and Discussion
3.1. Exploratory Analysis of Ca and K
3.2. Exploratory Analysis of Texture Content and Spectral Data Obtained from Fields A and B
3.3. Ca and K Prediction Using XRF Data Associated with Different Modeling Strategies for Matrix Effect Mitigation (Data Modeling Step One)
3.4. Prediction of Ca and K Using XRF Data Associated with Texture and vis–NIR Spectra as Auxiliary Information (Data Modeling Step Two)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Al-Kα | Si-Kα | K-Kα | Ca-Kα | Ti-Kα | Mn-Kα | Fe-Kα | Ni-Kα | Cu-Kα | |
---|---|---|---|---|---|---|---|---|---|
Min | 7.23 | 48.03 | 0.55 | 6.75 | 86.65 | 1.50 | 886.76 | 4.25 | 1.04 |
1Quart | 8.27 | 59.37 | 1.41 | 9.72 | 119.73 | 2.14 | 1082.56 | 4.82 | 1.61 |
media | 10.90 | 63.53 | 2.49 | 12.30 | 182.42 | 12.12 | 1426.26 | 5.77 | 2.79 |
3Quart | 14.29 | 67.59 | 3.44 | 14.04 | 237.66 | 20.15 | 1702.61 | 6.85 | 3.70 |
Max | 15.97 | 80.47 | 4.63 | 24.95 | 256.01 | 22.59 | 1781.72 | 8.11 | 4.13 |
References
- Weindorf, D.C.; Chakraborty, S. Portable X-ray fluorescence spectrometry analysis of soils. Soil Sci. Soc. Am. J. 2020, 84, 1384–1392. [Google Scholar] [CrossRef]
- Gredilla, A.; Fdez-Ortiz de Vallejuelo, S.; Elejoste, N.; de Diego, A.; Madariaga, J.M. Non-destructive Spectroscopy combined with chemometrics as a tool for Green Chemical Analysis of environmental samples: A review. TrAC Trends Anal. Chem. 2016, 76, 30–39. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef] [PubMed]
- Viscarra Rossel, R.A.; Bouma, J. Soil sensing: A new paradigm for agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Van Raij, B.; Andrade, J.C.; Cantarela, H.; Quaggio, J.A. Análise Química Para Avaliação De Solos Tropicais; IAC: Campinas, Brazil, 2001.
- Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil Properties in the Laboratory, In Situ, and On-Line. Adv. Agron. 2012, 114, 155–223. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Adamchuk, V.I.; Sudduth, K.A.; McKenzie, N.J.; Lobsey, C. Proximal Soil Sensing: An Effective Approach for Soil Measurements in Space and Time. Adv. Agron. 2011, 113, 243–291. [Google Scholar] [CrossRef]
- Bowers, C. Matrix Effect Corrections in X-ray Fluorescence Spectrometry. J. Chem. Educ. 2019, 96, 2597–2599. [Google Scholar] [CrossRef]
- Protection, U.-U.S.E. Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment; USA Environmental Protection Agency: Washington, DC, USA, 2007.
- Kalnicky, D.J.; Singhvi, R. Field portable XRF analysis of environmental samples. J. Hazard. Mater. 2001, 83, 93–122. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, D.; Boydaş, E. The use of scattering peaks for matrix effect correction in WDXRF analysis. Radiat. Phys. Chem. 2018, 153, 17–20. [Google Scholar] [CrossRef]
- Panchuk, V.; Yaroshenko, I.; Legin, A.; Semenov, V.; Kirsanov, D. Application of chemometric methods to XRF-data—A tutorial review. Anal. Chim. Acta 2018, 1040, 19–32. [Google Scholar] [CrossRef]
- Braga, J.W.B.; Trevizan, L.C.; Nunes, L.C.; Rufini, I.A.; Santos, D.; Krug, F.J. Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 66–74. [Google Scholar] [CrossRef]
- Aidene, S.; Khaydukova, M.; Pashkova, G.; Chubarov, V.; Savinov, S.; Semenov, V.; Kirsanov, D.; Panchuk, V. Does chemometrics work for matrix effects correction in X-ray fluorescence analysis? Spectrochim. Acta Part B At. Spectrosc. 2021, 185, 106310. [Google Scholar] [CrossRef]
- Facchin, I.; Mello, C.; Bueno, M.I.M.S.; Poppi, R.J. Simultaneous determination of lead and sulfur by energy-dispersive x-ray spectrometry. Comparison between artificial neural networks and other multivariate calibration methods. X-Ray Spectrom. 1999, 28, 173–177. [Google Scholar] [CrossRef]
- Sharma, A.; Weindorf, D.C.; Wang, D.; Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). Geoderma 2015, 239–240, 130–134. [Google Scholar] [CrossRef]
- Tavares, T.R.; Molin, J.P.; Hamed Javadi, S.; de Carvalho, H.W.P.; Mouazen, A.M. Combined use of vis-nir and xrf sensors for tropical soil fertility analysis: Assessing different data fusion approaches. Sensors 2021, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Schad, P., van Huyssteen, C., Micheli, E., Eds.; FAO: Rome, Italy, 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Element, C.A.S. Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z.Für Anal.Chem 2007, 111, 362–366. [Google Scholar]
- Bouyoucos, G.J. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils 1. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Tavares, T.R.; Molin, J.P.; Nunes, L.C.; Alves, E.E.N.; Melquiades, F.L.; de Carvalho, H.W.P.; Mouazen, A.M.; de Carvalho, H.W.P.; Mouazen, A.M. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sens. 2020, 12, 963. [Google Scholar] [CrossRef] [Green Version]
- Christy, C.; Drummond, P. Mobile Soil Mapping System for Collecting Soil Reflectance Measurements 2012. U.S. Patent No. 8,204,689, 19 June 2012. [Google Scholar]
- Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Kokaly, R. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Tavares, T.R.; Mouazen, A.M.; Alves, E.E.N.; Dos Santos, F.R.; Melquiades, F.L.; De Carvalho, H.W.P.; Molin, J.P. Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect. Agronomy 2020, 10, 787. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Sensors 2017, 17, 2428. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Guio Blanco, C.M.; Brito Gomez, V.M.; Crespo, P.; Ließ, M. Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma 2018, 316, 100–114. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [Google Scholar] [CrossRef]
- Nawar, S.; Mouazen, A.M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques. CATENA 2017, 151, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Mouazen, A.M. Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy. Comput. Electron. Agric. 2018, 151, 469–477. [Google Scholar] [CrossRef]
- Letey, J. Relationship between Soil Physical Properties and Crop Production. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1958; pp. 277–294. ISBN 978-1-4612-5046-3. [Google Scholar]
- Schäefer, C.E.G.R.; Fabris, J.D.; Ker, J.C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): A review. Clay Miner. 2008, 43, 137–154. [Google Scholar] [CrossRef]
- Singh, B.; Gilkes, R.J. Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia. J. Soil Sci. 1992, 43, 77–98. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173–243. [Google Scholar] [CrossRef]
- Terra, F.S.; Demattê, J.A.M.; Viscarra Rossel, R.A. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma 2015, 255–256, 81–93. [Google Scholar] [CrossRef]
- Demattê, J.A.; Campos, R.C.; Alves, M.C.; Fiorio, P.R.; Nanni, M.R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 2004, 121, 95–112. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification. Rev. Bras. Ciência Do Solo 2010, 34, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Guo, J.; Wei, Q.; Tang, X.; Lan, T.; Hou, Y.; Zhao, X. A Matrix Effect Correction Method for Portable X-ray Fluorescence Data. Appl. Sci. 2022, 12, 568. [Google Scholar] [CrossRef]
- Zhang, Y.; Hartemink, A.E. Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties. Eur. J. Soil Sci. 2020, 71, 316–333. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Viscarra Rossel, R.A.; Biswas, A.; Li, S.; Zhou, Y.; Shi, Z. X-ray fluorescence and visible near infrared sensor fusion for predicting soil chromium content. Geoderma 2019, 352, 61–69. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma 2016, 279, 31–44. [Google Scholar] [CrossRef]
- Da Silveira Paiva, A.F.; Poppiel, R.R.; Rosin, N.A.; Greschuk, L.T.; Rosas, J.T.F.; Demattê, J.A.M. The Brazilian Program of soil analysis via spectroscopy (ProBASE): Combining spectroscopy and wet laboratories to understand new technologies. Geoderma 2022, 421, 115905. [Google Scholar] [CrossRef]
- Ernst, T.; Berman, T.; Buscaglia, J.; Eckert-Lumsdon, T.; Hanlon, C.; Olsson, K.; Palenik, C.; Ryland, S.; Trejos, T.; Valadez, M.; et al. Signal-to-noise ratios in forensic glass analysis by micro X-ray fluorescence spectrometry. X-Ray Spectrom. 2014, 43, 13–21. [Google Scholar] [CrossRef]
RF for Ca | RF for K | SF-XT for K | SF-XV for K | SF-XTV for K | RFp-XT for Ca | RFp-XV for Ca | RFp-XTV for Ca | RFp-XT for K | RFp-XV for K | RFp-XTV for K |
---|---|---|---|---|---|---|---|---|---|---|
798 | 652 | 1236 | 1236 | 1090 | 3 | 4 | 6 | 3 | 4 | 6 |
R2 | RMSE | RMSE% | RPIQ | RI * | R2 | RMSE | RMSE% | RPIQ | RI * | ||
---|---|---|---|---|---|---|---|---|---|---|---|
calibration set—Ca | calibration set—K | ||||||||||
RS1 | 0.67 | 112.27 | 17.98 | 3.48 | — | RS1 | 0.85 | 39.54 | 19.81 | 6.93 | — |
RS2 | 0.93 | 41.65 | 6.67 | 9.37 | 62.9 | RS2 | 0.89 | 33.75 | 16.92 | 8.12 | 14.6 |
MLR | 0.92 | 46.95 | 7.52 | 8.31 | 58.2 | MLR | 0.91 | 29.75 | 14.91 | 9.21 | 24.7 |
PLS | 0.95 | 38.60 | 6.18 | 10.11 | 65.6 | PLS | 0.97 | 20.88 | 10.46 | 13.13 | 47.2 |
RF | 0.98 | 21.91 | 3.51 | 17.80 | 80.5 | RF | 0.98 | 14.29 | 7.16 | 19.18 | 63.8 |
validation set—Ca | validation set—K | ||||||||||
RS1 | 0.73 | 101.04 | 16.83 | 3.39 | — | RS1 | 0.78 | 48.66 | 23.04 | 6.62 | — |
RS2 | 0.91 | 48.25 | 8.04 | 7.10 | 52.3 | RS2 | 0.84 | 39.62 | 18.76 | 8.13 | 18.6 |
MLR | 0.92 | 53.35 | 8.89 | 6.42 | 47.2 | MLR | 0.81 | 40.53 | 19.19 | 7.95 | 16.7 |
PLS | 0.92 | 51.68 | 8.61 | 6.63 | 48.8 | PLS | 0.83 | 42.51 | 20.12 | 7.58 | 12.7 |
RF | 0.85 | 63.09 | 10.51 | 5.43 | 37.6 | RF | 0.84 | 36.82 | 17.43 | 8.75 | 24.3 |
R2 | RMSE | RMSE% | RPIQ | RI * | R2 | RMSE | RMSE% | RPIQ | RI * | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Calibration dataset—Ca | Calibration dataset—K | ||||||||||
SF 1-XT | 0.95 | 37.08 | 5.94 | 10.52 | — | SF 2-XT | 0.98 | 14.07 | 7.05 | 19.49 | — |
SF 1-XV | 0.95 | 41.23 | 6.6 | 9.46 | — | SF 2-XV | 0.98 | 13.74 | 6.89 | 19.94 | — |
SF 1-XTV | 0.95 | 38.35 | 6.14 | 10.17 | — | SF 2-XTV | 0.98 | 14.26 | 7.15 | 19.23 | — |
RFp-XT | 0.98 | 19.96 | 3.2 | 19.54 | — | RFp-XT | 0.99 | 4.43 | 2.22 | 61.81 | — |
RFp-XV | 0.98 | 19.74 | 3.16 | 19.76 | — | RFp-XV | 0.99 | 4.55 | 2.28 | 60.25 | — |
RFp-XTV | 0.98 | 18.65 | 2.99 | 20.91 | — | RFp-XTV | 0.99 | 4.44 | 2.22 | 61.77 | — |
Validation dataset—Ca | Validation dataset—K | ||||||||||
SF 1-XT | 0.91 | 58.45 | 9.74 | 5.86 | −21.1 | SF 2-XT | 0.84 | 37.15 | 17.59 | 8.67 | −0.9 |
SF 1-XV | 0.93 | 47.8 | 7.96 | 7.16 | 0.9 | SF 2-XV | 0.85 | 36.9 | 17.47 | 8.73 | −0.2 |
SF 1-XTV | 0.92 | 52.3 | 8.71 | 6.55 | −8.4 | SF 2-XTV | 0.84 | 37.92 | 17.95 | 8.49 | −3.00 |
RFp-XT | 0.91 | 52.63 | 8.77 | 6.51 | −9.1 | RFp-XT | 0.87 | 31.93 | 15.12 | 10.09 | 13.3 |
RFp-XV | 0.91 | 51.35 | 8.56 | 6.67 | −6.4 | RFp-XV | 0.87 | 32.75 | 15.5 | 9.83 | 11.1 |
RFp-XTV | 0.91 | 52.97 | 8.82 | 6.47 | −9.8 | RFp-XTV | 0.87 | 31.47 | 14.9 | 10.23 | 14.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, T.R.; de Almeida, E.; Junior, C.R.P.; Guerrero, A.; Fiorio, P.R.; de Carvalho, H.W.P. Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables. AgriEngineering 2023, 5, 680-697. https://doi.org/10.3390/agriengineering5020043
Tavares TR, de Almeida E, Junior CRP, Guerrero A, Fiorio PR, de Carvalho HWP. Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables. AgriEngineering. 2023; 5(2):680-697. https://doi.org/10.3390/agriengineering5020043
Chicago/Turabian StyleTavares, Tiago Rodrigues, Eduardo de Almeida, Carlos Roberto Pinheiro Junior, Angela Guerrero, Peterson Ricardo Fiorio, and Hudson Wallace Pereira de Carvalho. 2023. "Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables" AgriEngineering 5, no. 2: 680-697. https://doi.org/10.3390/agriengineering5020043
APA StyleTavares, T. R., de Almeida, E., Junior, C. R. P., Guerrero, A., Fiorio, P. R., & de Carvalho, H. W. P. (2023). Analysis of Total Soil Nutrient Content with X-ray Fluorescence Spectroscopy (XRF): Assessing Different Predictive Modeling Strategies and Auxiliary Variables. AgriEngineering, 5(2), 680-697. https://doi.org/10.3390/agriengineering5020043