Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Climatic Conditions
2.2. Experimental Design, Treatments and Measurements
2.3. Forage Quality Analyses
2.4. Statistical Analyses
3. Results
3.1. Changes in Plant Height
3.2. Plant Dry Matter Yields and Total Digestible Nutrient (TDN) Contents
3.3. Grain Yield and Grain Yield Components
3.4. Plant DM Yields, and TDN Yields in Relation to Plant Leaf Area at Silking Stage
3.5. Relationship between Acid Detergent Fiber (ADF) Content and In Vitro Dry Matter Digestibility (IVDMD) at Harvest
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rane, R.; Walsh, T.K.; Lenancker, P.; Gock, A.; Dao, T.H.; Nguyen, V.L.; Khin, T.N.; Amalin, D.; Chittarath, K.; Faheem, M.; et al. Complex multiple introductions drive fall armyworm invasions into Asia and Australia. Sci. Rep. 2023, 13, 660. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.-Y.; Zhou, H.-X.; Ren, Y.-L.; Li, Z.-Y.; Xing, L.-S.; Zhang, B.; Qiao, X.; Liu, B.; et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Munyua, B.; Palmas, S.; Kassie, M.; Bruce, A. Spread and impact of fall armyworm (Spodoptera frugiperda J. E. Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 2020, 292, 106804. [Google Scholar] [CrossRef]
- Girsang, S.S.; Nurzannah, S.E.; Girsang, M.A.; Effendi, R. The distribution and impact of fall army worm (Spodoptera frugiperda) on maize production in North Sumatera. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012099. [Google Scholar] [CrossRef]
- Caasi-Lit, M.T.; Marmeto, A.M.D. Maize response to fall armyworm (Spodoptera frugiperda) and Asian corn borer (Ostrinia furnacalis) in the Philippines. SABRAO J. Breed. Genet. 2022, 54, 1231–1240. [Google Scholar] [CrossRef]
- Dahi, H.F.; Salem, S.A.R.; Gamil, W.E.; Mohamed, H.O. Heat requirements for the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) as a new invasive pest in Egypt. Egypt. Acad. J. Biol. Sci. A Entomol. 2020, 13, 73–85. [Google Scholar] [CrossRef]
- Westbrook, J.K.; Nagoshi, R.N.; Meagher, R.L.; Fleischer, S.J.; Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 2016, 60, 255–267. [Google Scholar] [CrossRef]
- Otsuka, A. Prediction of the overseas migration of the fall armyworm, Spodoptera frugiperda, to Japan. Insects 2023, 14, 804. [Google Scholar] [CrossRef]
- Fan, Z.; Song, Y.; Zhao, S.; Wu, K. Invasion of fall armyworm led to the succession of maize pests in Southwest China. J. Integr. Agric. 2024, 23, 1300–1314. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries of Japan, MAFF. Outbreak of Fall Armyworm in 2020 (as of 6 November 2020). Available online: https://www.maff.go.jp/j/syouan/syokubo/keneki/k_kokunai/attach/pdf/tumajiro-146.pdf (accessed on 13 April 2024).
- Yang, Y.; Ishii, Y.; Idota, S. Year-round forage yield stability through a system combining triple-maize crops with winter barley in Kyushu, Japan. Am. J. Agric. Biol. Sci. 2016, 11, 19–28. [Google Scholar] [CrossRef]
- Li, B.; Ishii, Y.; Idota, S.; Tobisa, M.; Niimi, M.; Yang, Y.; Nishimura, K. Yield and quality of forages in a triple cropping system in southern Kyushu, Japan. Agronomy 2019, 9, 277. [Google Scholar] [CrossRef]
- Ratnakala, B.; Kalleshwaraswamy, C.M.; Rajkumar, M.; Deshmukh, S.S.; Mallikarjuna, H.B.; Narasimhaiah, L. Field evaluation of whorl application of sand mixed entomopathogenic nematodes for the management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in sweet corn. Egypt. J. Biol. Pest Control 2023, 33, 58. [Google Scholar] [CrossRef]
- Toepfer, S.; Fallet, P.; Kajuga, J.; Bazagwira, D.; Mukundwa, I.P.; Szalai, M.; Turlings, T.C.J. Streamlining leaf damage rating scales for the fall armyworm on maize. J. Pest Sci. 2021, 94, 1075–1089. [Google Scholar] [CrossRef]
- Soujanya, P.L.; Sekhar, J.C.; Yathish, K.R.; Karjagi, C.G.; Rao, K.S.; Suby, S.B.; Jat, S.L.; Kumar, B.; Kumar, K.; Vadessery, J.; et al. Leaf damage based phenotyping technique and its validation against fall armyworm, Spodoptera frugiperda (J. E. Smith), in maize. Front. Plant Sci. 2022, 13, 906207. [Google Scholar] [CrossRef]
- Supartha, I.W.; Susila, I.W.; Yuliadhi, K.A.; Haloho, E.S.M.; Yudha, I.K.W.; Utama, I.W.E.K.; Wiradana, P.A. Monitoring of damage and distribution of invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize crop in Karo, North Sumatera, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 951, 012010. [Google Scholar] [CrossRef]
- Chisonga, C.; Chipabika, G.; Philemon, H.; Sohati, P.H.; Harrison, R.D. Understanding the impact of fall armyworm (Spodoptera frugiperda J. E. Smith) leaf damage on maize yields. PLoS ONE 2023, 18, e0279138. [Google Scholar] [CrossRef]
- Blanco, C.A.; Conover, K.; Hernandez, G.; Valentini, G.; Portilla, M.; Abel, C.A.; Williams, P.; Nava-Camberos, U.; Hutchison, W.D.; Dively, G.P. Grain yield is not impacted by early defoliation of maize: Implications for fall armyworm action thresholds. Southwest. Entomol. 2022, 47, 335–344. [Google Scholar] [CrossRef]
- Echarte, L.; Andrade, F.H.; Sadras, V.O.; Abbate, P. Kernel weight and its response to source manipulations during grain filling in Argentinean maize hybrids released in different decades. Field Crops Res. 2006, 96, 307–312. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Meteorological Statistical Data for Miyazaki, Miyazaki Prefecture. Available online: https://www.jma.go.jp/jma/menu/report.html (accessed on 13 April 2024).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ANKOM Technology Corporation. ANKOM—Automation Made Simple; ANKOM Technology: Macedon, NY, USA; Available online: https://www.ankom.com/ (accessed on 13 April 2024).
- Committee for the Nutritive Value of Grass and Forage Crops. The Guidebook of Nutritive Values of Herbage and Forage Crop; Hokunoukai: Sapporo, Japan, 1991; pp. 41–45. [Google Scholar]
- Goto, I.; Minson, D.J. Prediction of the dry matter digestibility of tropical grasses using a pepsin-cellulase assay. Anim. Feed Sci. Technol. 1977, 2, 247–253. [Google Scholar] [CrossRef]
- Briones Ochoa, M.A.; Sánchez-Mora, F.D.; Chirinos Torres, D.T. Can fall armyworm damage decrease depending on the season, maize hybrid, and type of pesticides? Sci. Agropecu. 2023, 14, 313–320. [Google Scholar] [CrossRef]
- Xu, J.; Zou, X.; Xu, H.; Gong, L.; Sun, Z.; Zhang, L.; Niu, S.; Feng, L.; Han, L.; Wang, R. Defoliation at seedling stage enhances maize yield by reducing lodging. Agron. J. 2023, 115, 544–556. [Google Scholar] [CrossRef]
- Van den Berg, J.; Britz, C.; du Plessis, H. Maize yield responses to chemical control of Spodoptera frugiperda at different plant growth stages in South Africa. Agriculture 2021, 11, 826. [Google Scholar] [CrossRef]
- Kaewchuai, S.; Thobunluepop, P.; Nakasathien, S.; Lertmongkol, S.; Onwimol, D.; Chitbanchong, W.; Bredemeier, M. Management of source-sink balance for maintaining seed vigor and storability of maize. Online J. Biol. Sci. 2021, 21, 199–205. [Google Scholar] [CrossRef]
- Oliveira, C.; Orozco-Restrepo, S.M.; Alves, A.C.L.; Pinto, B.S.; Miranda, M.S.; Barbosa, M.H.P.; Picanço, M.C.; Pereira, E.J.G. Seed treatment for managing fall armyworm as a defoliator and cutworm on maize: Plant protection, residuality, and the insect life history. Pest Manag. Sci. 2022, 78, 1240–1250. [Google Scholar] [CrossRef]
- Corteva, Agriscience, Japan. LumiviaTM FS. Available online: https://www.corteva.jp/products-and-solutions/crop-protection/lumivia-fs.html (accessed on 16 April 2024).
- Ulina, E.S.; Manurung, E.D.; Hasibuan, M.; Nasution, L.Z. Biosilica fertilizer reduces fall armyworm damage. IOP Conf. Ser. Earth Environ. Sci. 2022, 985, 012049. [Google Scholar] [CrossRef]
Year: 2022 | Year: 2023 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cropping | Variable | Cont | DF1 | DF2 | DF3 | Cont | DF1 | DF2 | DF3 |
Spring sowing | K | 269.00 | 247.00 | 268.00 | 265.00 | 300.00 | 301.50 | 296.00 | 285.00 |
a | 0.0850 | 0.0845 | 0.0840 | 0.0850 | 0.0947 | 0.1004 | 0.0942 | 0.0934 | |
b | 88.079 | 110.047 | 89.881 | 89.202 | 139.428 | 218.604 | 138.078 | 127.782 | |
Multiple correlation coefficient | 0.9848 | 0.9809 | 0.9905 | 0.9889 | 0.9803 | 0.9960 | 0.9905 | 0.9927 | |
p value | 0.0152 * | 0.0191 * | 0.0095 ** | 0.0111 * | 0.0197 * | 0.004 ** | 0.0095 ** | 0.0073 ** | |
Late sowing | K | 264.00 | 256.00 | 259.00 | 257.00 | 258.00 | 241.00 | 251.00 | 249.00 |
a | 0.0810 | 0.0819 | 0.0803 | 0.0777 | 0.0911 | 0.0965 | 0.0886 | 0.0878 | |
b | 24.096 | 27.255 | 24.854 | 22.538 | 39.112 | 58.198 | 35.161 | 29.427 | |
Multiple correlation coefficient | 0.9760 | 0.9906 | 0.9697 | 0.9711 | 0.9896 | 0.9968 | 0.9885 | 0.9761 | |
p value | 0.024 * | 0.0094 ** | 0.0303 * | 0.0289 * | 0.0918 + | 0.0513 + | 0.0965 + | 0.1395 | |
Summer sowing | K | 177.00 | 181.00 | 184.00 | 179.00 | 270.75 | 274.45 | 270.85 | 264.75 |
a | 0.0830 | 0.0834 | 0.0862 | 0.0813 | 0.1336 | 0.1336 | 0.1394 | 0.1328 | |
b | 24.473 | 25.101 | 29.460 | 27.095 | 152.671 | 167.949 | 187.945 | 143.694 | |
Multiple correlation coefficient | 0.9868 | 0.9759 | 0.9949 | 0.9971 | 0.9911 | 0.9895 | 0.9882 | 0.9880 | |
p value | 0.0132 * | 0.0242 * | 0.0051 ** | 0.0029 ** | 0.001 ** | 0.0013 ** | 0.0015 ** | 0.0016 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashiro, K.; Ishitani, M.; Murai, S.; Niimi, M.; Tobisa, M.; Idota, S.; Adachi-Hagimori, T.; Ishii, Y. Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda). AgriEngineering 2024, 6, 1847-1858. https://doi.org/10.3390/agriengineering6020107
Tashiro K, Ishitani M, Murai S, Niimi M, Tobisa M, Idota S, Adachi-Hagimori T, Ishii Y. Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda). AgriEngineering. 2024; 6(2):1847-1858. https://doi.org/10.3390/agriengineering6020107
Chicago/Turabian StyleTashiro, Kouki, Midori Ishitani, Saaya Murai, Mitsuhiro Niimi, Manabu Tobisa, Sachiko Idota, Tetsuya Adachi-Hagimori, and Yasuyuki Ishii. 2024. "Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda)" AgriEngineering 6, no. 2: 1847-1858. https://doi.org/10.3390/agriengineering6020107
APA StyleTashiro, K., Ishitani, M., Murai, S., Niimi, M., Tobisa, M., Idota, S., Adachi-Hagimori, T., & Ishii, Y. (2024). Effect of Defoliation on Growth, Yield and Forage Quality in Maize, as a Simulation of the Impact of Fall Armyworm (Spodoptera frugiperda). AgriEngineering, 6(2), 1847-1858. https://doi.org/10.3390/agriengineering6020107