Bioremediation of Basil Pesto Sauce-Manufactured Wastewater by the Microalgae Chlorella vulgaris Beij. and Scenedesmus sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Evaluation of Pesto Wastewater as Substrate for Microalgae Cultivation
2.3. Evaluation of 50% v/v Pesto Wastewater and CO2 Addition
2.4. Monitoring Analyses and Biomass Storage
2.4.1. Elementary Analysis
2.4.2. Lipids Extraction
3. Results and Discussion
3.1. Wastewater–CO2 Combined Experiments
3.2. Pesto Wastewater Phytoremediation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olabi, A.; Shehata, N.; Sayed, E.; Rodriguez, C.; Anyanwu, R.; Russel, C.; Abdelkareem, M.E. Role of microalgae in achieving sustainable development goals and circular economy. Sci. Total Environ. 2023, 854, 158689. [Google Scholar] [CrossRef] [PubMed]
- Najar-Almanzor, C.; Velasco-Iglesias, K.; Nunez-Ramos, R.; Uribe-Velàzquez, T.; Solis-Banuelos, M.; Fuentes-Carrsco, O.; Chairez, I.; Garcià-Cayuela, T.; Carrillo-Nieves, D. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept. J. Environ. Manag. 2023, 345, 118774. [Google Scholar] [CrossRef] [PubMed]
- Vaz, S.; Badenes, S.; Pinheiro, H.; Martins, R. Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy. Environ. Technol. Innov. 2023, 30, 1013107. [Google Scholar] [CrossRef]
- Cheirsilp, B.; Maneechote, W.; Srinuanpan, S.; Angelidaki, I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. Bioresour. Technol. 2023, 387, 129620. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.-H.; Zhang, J.-T.; Chi, Z.-Y.; Kong, F.-T.; Zhang, Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scena ios. Sci. Total Environ. 2023, 856, 159153. [Google Scholar] [CrossRef]
- Malla, F.; Sofi, N.; Gupta, N.; Bandh, S. Chapter 14—Valorization of microalgae for biogas methane enhancement. In Valorization of Microalgal Biomass and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 317–332. [Google Scholar] [CrossRef]
- Kong, W.; Kong, J.; Ma, J.; Lyu, H.; Feng, S.; Wang, Z.; Yuan, P.; Shen, B. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO2 fixation simultaneously. J. Environ. Manag. 2021, 284, 112070. [Google Scholar] [CrossRef] [PubMed]
- Molazadeh, M.; Ahmadzadeh, H.; Pourianfar, H.R.; Lyon, S.; Rampelotto, P.H. The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2019, 76, 379–390. [Google Scholar] [CrossRef]
- Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; de Lasa, H. Biological CO2 fixation with production of microalgae in wastewater—A Review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. [Google Scholar] [CrossRef]
- Taurisano, V.; Anzelmo, G.; Poli, A.; Nicolaus, B.; Di Donato, P. Re-use of Agro-industrial Waste: Recovery of Valuable Compounds by Eco-friendly Techniques. Int. J. Perform. Eng. 2014, 10, 419–425. [Google Scholar]
- Viegas, C.; Gonçalves, M. Sustainable Industrial Processes Based on Microalgae. Chapter 6—Treatment of Agro-Industrial Wastes Using Microalgae; Elsevier: Amsterdam, The Netherlands, 2024; pp. 107–130. [Google Scholar] [CrossRef]
- Scarponi, P.; Bravi, M.; Cavinato, C. Wine Lees as Alternative Substrate for Microalgae Cultivation: New Opportunity in Winery Waste Biorefinery Application. Waste 2023, 1, 631–639. [Google Scholar] [CrossRef]
- Scarponi, P.; Izzo, F.C.; Bravi, M.; Cavinato, C. C. vulgaris growth batch tests using winery waste as promising raw material for biodiesel and stearin production. Waste Manag. 2021, 136, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Cicci, A.; Scarponi, P.; Cavinato, C.; Braavi, M. Microalgae production in olive mill wastewater fraction and cattle digestate slurry: Bioremediation effects and suitability for energy and feed uses. Sci. Total Environ. 2024, 932, 172773. [Google Scholar] [CrossRef]
- De Bruno, A.; Gattuso, A.; Romeo, R.; Santacetrina, S.; Piscopo, A. Sustainable Application of Natural Ant oxidant Extract Recovered from Olive Mill Wastewater on Shelf-Life Extension of “Basil Pesto”. Appl. Sci. 2022, 12, 10965. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algae Species; Elsevier: Amsterdam, The Netherlands, 1963; pp. 1–95. [Google Scholar]
- Starr, R.C.; Zeikus, J.A. UTEX-The culture collection of algae at the University of Texas at Austin. Int. J. Phycol. 1993, 29, 1–106. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci. Total Environ. 2017, 584–585, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- UNI EN ISO 15587-2:2022; Water Quality—Digestion for the Determination of Selected Elements in Waster—Part: 2: Nitric Acid Digestion. International Organization for Standardization: Geneva, Switzerland, 2002.
- ISO 17294-2:2016; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MP)—Part: 2 Determination of Selected Elements Including Uranium Isotopes. Organization for Standardization: Geneva, Switzerland, 2016.
- EN ISO 11905-1:1998; Water Quality—Determination of Nitrogen—Part 1: Method Oxidative Digestion with Peroxodisultafate (ISO 11905-1:1997). Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 6060; International Standard. Water Quality—Determination of the Chemical Oxygen Demand. Organization for Standardization: Geneva, Switzerland, 1989.
- ISO 5815-1; International Standard. Water quality—Determination of Biochemical Oxygen Demand after n Days (BoDn)—Part 1: Dilution and Seeding Method with Allythiourea Addition. Organization for Standardization: Geneva, Switzerland, 2019.
- Li, S.; Song, C.; Li, M.; Chen, Y.; Lei, Z.; Zhang, Z. Effect of different nitrogen ratio on the performance of CO2 absorption and microalgae conversion (CAMC) hybrid system. Bioresour. Technol. 2020, 306, 123126. [Google Scholar] [CrossRef] [PubMed]
- Australian National Algae Culture Collection—Methods: Algal Growth Phases Including Determination of the Growth Rate and Population Doubling Time. Available online: https://www.marine.csiro.au/microalgae/methods/ (accessed on 5 March 2024).
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Han, W.; Jin, W.; Yang, J.; Gao, S.; Li, S.F.; Tu, R.; Han, S.; Chen, Y.; Zhou, X. Cultivation of Scenedesmus obliquus and Chlorella pyrenoidosa in Municipal Wastewater Using Monochromatic and White LED as Light Sources. Waste Biomass Valor 2021, 12, 4873–4883. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Zhao, G.-P.; Zhang, H.-K.; Zhai, Q.-Y.; Wang, Q. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential. Sci. Total Environ. 2022, 807, 151008. [Google Scholar] [CrossRef]
- Masojίdek, J.; Torzillo, G.; Koblίzek, M. Photosynthesis in Microalgae. Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Richmond, A., Hu, Q., Eds.; Wiley: Hoboken, NJ, USA, 2013; pp. 21–36. [Google Scholar] [CrossRef]
- Chazaux, M.; Schiphorst, C.; Lazzari, G.; Caffarri, S. Precise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determination. Plant J. 2022, 109, 1630–1648. [Google Scholar] [CrossRef]
- de Morais, E.; Murillo, A.; Lens, P.; Ferrer, I.; Uggetti, E. Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp. Sci. Total Environ. 2022, 851, 158337. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Fan, X.; Qu, L.; Zhou, X.; Jin, W.; Hatshan, M.; Li, X.; Liu, H.; Jiang, G.; Wang, Q. Cultivation of Chlorella pyrenoidosa and Scenedesmus obliquus in swine wastewater: Nitrogen and phosphorus removal and microalgal growth. Proess Saf. Environ. Prot. 2023, 179, 887–895. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Hong, Y.; Liu, X.; Zhao, G.; Zhang, H.; Zhai, Q. Microalgae cultivation in domestic wastewater for wastewater treatment and high-added production: Species selection and comparison. Biochem. Eng. J. 2022, 185, 108493. [Google Scholar] [CrossRef]
- Ajala, S.; Alexander, M. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int. J. Energy Environ. Eng. 2020, 11, 311–326. [Google Scholar] [CrossRef]
- Singh, D.; Upadhyay, A.; Singh, R.; Singh, D. Implication of municipal wastewater on growth kinetics, bi chemical profile, and defense system of Chlorella vulgaris and Scenedesmus vacuolatus. Environ. Technol. Innov. 2022, 26, 102334. [Google Scholar] [CrossRef]
- Kuo, C.-M.; Chen, T.-Y.; Lin, T.-H.; Kao, C.-Y.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour. Technol. 2015, 194, 326–333. [Google Scholar] [CrossRef]
- Decreto Legislativo 3 Aprile 2006, n. 152 Norme in Materia Ambientale. (GU n.88 del 14-4-2006—Suppl. Ordinario n. 96). Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-04-14&atto.codiceRedazionale=006G0171&elenco30giorni=false (accessed on 20 May 2024).
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef]
- Su, H.; Zhang, Y.; Zhang, C.; Zhou, X.; Li, J. Cultivation of Chlorella pyrenoidosa in soy bean processing wastewater. Bioresour. Technol. 2011, 102, 9884–9890. [Google Scholar] [CrossRef]
Total phosphorus, P (mg L−1) | 3.67 ± 0.63 | [18,19] |
Total nitrogen, N (mg L−1) | 4.21 ± 0.67 | [20] |
Chemical oxygen demand, COD (mg LO2−1) | 245 ± 12 | [21] |
Biochemical oxygen demand, BOD (mg LO2−1) | 86 ± 3 | [22] |
CO2 (%) | Light | Dry Weight (mg L−1 d−1) | PCO2 (mg L−1 d−1) | Crude Protein (%) | Lipid (mg g dry biomass−1) | μmax (d−1) | Divisions per Day | Generation Time (d) | ||
---|---|---|---|---|---|---|---|---|---|---|
Chlorella | 50% v/v basil pesto wastewater | 0.04 | White | 75.9 ± 11.4 | 123.1 ± 36.4 | 23.1 ± 3.4 | 53.4 ± 11.4 | 0.5 ± 0.0 | 0.7 ± 0.0 | 1.5 ± 0.1 |
Red | 103.6 ± 7.6 | 182.9 ± 13.9 | 18.3 ± 0.6 | 75.1 ± 32.2 | 0.5 ± 0.0 | 0.8 ± 0.0 | 1.3 ± 0.0 | |||
2 | White | 108.9 ± 2.5 | 193.3 ± 5.4 | 18.9 ± 0.4 | 52.9 ± 26.6 | 0.6 ± 0.1 | 0.8 ± 0.1 | 1.3 ± 0.2 | ||
Red | 119.6 ± 10.1 | 214.6 ± 18.9 | 16.2 ± 0.7 | 46.6 ± 18.0 | 0.5 ± 0.1 | 0.7 ± 0.1 | 1.4 ± 0.2 | |||
5 | White | 105.4 ± 10.1 | 185.1 ± 18.5 | 20.3 ± 1.0 | 73.5 ± 8.0 | 0.7 ± 0.0 | 1.1 ± 0.0 | 1.0 ± 0.0 | ||
Red | 108.0 ± 1.3 | 187.8 ± 3.1 | 17.1 ± 0.6 | 79.3 ± 11.4 | 0.6 ± 0.0 | 0.8 ± 0.1 | 1.2 ± 0.1 | |||
Scenedesmus | 0.04 | White | 89.3 ± 2.5 | 154.1 ± 5.6 | 24.8 ± 1.3 | 75.5 ± 13.3 | 0.4 ± 0.0 | 0.5 ± 0.0 | 1.9 ± 0.1 | |
Red | 120.5 ± 1.3 | 209.7 ± 6.2 | 17.9 ± 0.7 | 47.2 ± 22.8 | 0.4 ± 0.1 | 0.6 ± 0.1 | 1.7 ± 0.3 | |||
2 | White | 108.9 ± 2.5 | 191.5 ± 5.8 | 18.0 ± 0.5 | 44.1 ± 13.6 | 0.4 ± 0.0 | 0.6 ± 0.0 | 1.7 ± 0.0 | ||
Red | 107.1 ± 5.1 | 190.3 ± 9.6 | 18.0 ± 1.3 | 53.7 ± 2.6 | 0.6 ± 0.1 | 0.8 ± 0.1 | 1.3 ± 0.2 | |||
5 | White | 91.1 ± 10.1 | 159.7 ± 18.3 | 20.7 ± 0.8 | 54.1 ± 21.3 | 0.5 ± 0.0 | 0.7 ± 0.0 | 1.4 ± 0.0 | ||
Red | 110.7 ± 5.1 | 193.4 ± 9.4 | 18.1 ± 0.3 | 43.6 ± 14.2 | 0.6 ± 0.1 | 0.9 ± 0.1 | 1.1 ± 0.1 |
Surface Water Discharge | Sewerage System Discharge | Ground Discharge | |
---|---|---|---|
P (mg L −1) | 10 | 10 | 2 |
NH4+ (mg L −1) | 15 | 30 | - |
N (mg L −1) | - | - | 15 |
COD (mg LO2 −1) | 40 | 250 | 20 |
BOD (mg LO2 −1) | 160 | 500 | 100 |
Experimental Conditions | Residual Concentration in the Liquid Fraction | Removal (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CO2 (%) | Light | P (mg L−1) | N (mg L−1) | COD (mg LO2−1) | BOD (mg LO2−1) | P | N | COD | BOD | ||
Chlorella | 50% v/v pesto wastewater | 0.04 | White | 1.4 ± 0.1 | 22.5 ± 1.4 | 90.0 ± 4.2 | 32.0 ± 2.0 | 94.8 | 99.6 | 26.5 | 25.6 |
Red | 2.1 ± 0.1 | 22.5 ± 1.4 | 88.5 ± 3.9 | 32.0 ± 2.0 | 92.2 | 99.5 | 27.8 | 25.6 | |||
2 | White | 0.8 ± 0.0 | 22.5 ± 1.3 | 89.5 ± 4.3 | 32.0 ± 1.0 | 97.1 | 99.5 | 26.9 | 25.6 | ||
Red | 2.0 ± 0.1 | 22.6 ± 1.4 | 86.5 ± 3.7 | 32.0 ± 2.0 | 92.4 | 99.8 | 29.4 | 25.6 | |||
5 | White | 1.6 ± 0.1 | 22.6 ± 1.4 | 83.0 ± 3.3 | 30.5 ± 1.4 | 93.9 | 100 | 32.2 | 29.1 | ||
Red | 3.1 ± 0.2 | 18.7 ± 1.3 | 75.3 ± 2.9 | 28.0 ± 1.0 | 88.3 | 82.7 | 38.8 | 34.9 | |||
Scenedesmus | 0.04 | White | 0.0 ± 0.0 | 19.8 ± 1.3 | 90.2 ± 3.1 | 32.0 ± 2.0 | 99.9 | 87.4 | 26.5 | 25.6 | |
Red | 0.9 ± 0.1 | 22.6 ± 1.4 | 88.2 ± 3.1 | 31.5 ± 1.6 | 96.5 | 99.7 | 28.2 | 26.8 | |||
2 | White | 2.4 ± 0.2 | 22.6 ± 1.3 | 87.0 ± 3.7 | 32.0 ± 1.0 | 91.1 | 100 | 29.0 | 25.6 | ||
Red | 2.3 ± 0.2 | 22.6 ± 1.4 | 83.5 ± 3.1 | 31.0 ± 2.0 | 91.5 | 99.8 | 31.8 | 27.9 | |||
5 | White | 3.9 ± 0.3 | 22.4 ± 1.4 | 84.4 ± 4.0 | 31.0 ± 1.0 | 85.3 | 98.8 | 31.4 | 27.9 | ||
Red | 4.2 ± 0.4 | 18.0 ± 1.2 | 79.2 ± 2.8 | 29.0 ± 1.0 | 84.2 | 79.6 | 35.5 | 32.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarponi, P.; Frongia, F.; Cramarossa, M.R.; Roncaglia, F.; Arru, L.; Forti, L. Bioremediation of Basil Pesto Sauce-Manufactured Wastewater by the Microalgae Chlorella vulgaris Beij. and Scenedesmus sp. AgriEngineering 2024, 6, 1674-1682. https://doi.org/10.3390/agriengineering6020096
Scarponi P, Frongia F, Cramarossa MR, Roncaglia F, Arru L, Forti L. Bioremediation of Basil Pesto Sauce-Manufactured Wastewater by the Microalgae Chlorella vulgaris Beij. and Scenedesmus sp. AgriEngineering. 2024; 6(2):1674-1682. https://doi.org/10.3390/agriengineering6020096
Chicago/Turabian StyleScarponi, Paolina, Francesca Frongia, Maria Rita Cramarossa, Fabrizio Roncaglia, Laura Arru, and Luca Forti. 2024. "Bioremediation of Basil Pesto Sauce-Manufactured Wastewater by the Microalgae Chlorella vulgaris Beij. and Scenedesmus sp." AgriEngineering 6, no. 2: 1674-1682. https://doi.org/10.3390/agriengineering6020096
APA StyleScarponi, P., Frongia, F., Cramarossa, M. R., Roncaglia, F., Arru, L., & Forti, L. (2024). Bioremediation of Basil Pesto Sauce-Manufactured Wastewater by the Microalgae Chlorella vulgaris Beij. and Scenedesmus sp. AgriEngineering, 6(2), 1674-1682. https://doi.org/10.3390/agriengineering6020096