Agricultural Tractor Test: A Bibliometric Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Characterization
2.2. Selection and Adjustments in Databases
2.3. Bibliometric Mapping
3. Results and Discussion
3.1. Research Evolution
3.2. Top Journals’ Research
Paper | DOI—Title | TC | TC Year |
---|---|---|---|
Liu et al., 2008 [32] | 10.1016/j.ejor.2007.06.032—On solving multiobjective bin packing problems using evolutionary particle swarm optimization | 112 | 7.47 |
Kheiralla et al., 2004 [64] | 10.1016/j.still.2003.12.011—Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia | 77 | 4.05 |
Grisso et al., 2004 [65] | 10.13031/2013.17455—Predicting tractor fuel consumption | 69 | 3.63 |
Hameed et al., 2016 [68] | 10.1016/j.robot.2015.11.009—Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths | 61 | 8.71 |
Molari et al., 2012 [14] | 10.1016/j.biosystemseng.2011.10.008—Performance of an agricultural tractor fitted with rubber tracks | 60 | 5.45 |
Sun et al., 2017 [69] | 10.3390/rs9040377—In-field high-throughput phenotyping of cotton plant height using LiDAR | 54 | 9.00 |
Battiato & Diserens, 2017 [70] | 10.1016/j.still.2016.09.005—Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice | 48 | 8.00 |
Tomić et al., 2013 [71] | 10.2298/TSCI111122106T—Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines | 45 | 4.50 |
Del Rey et al., 2014 [67] | 10.13031/aea.30.10342—Comparison of Positional Accuracy between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles under Field Conditions | 37 | 4.11 |
Serrano et al., 2007 [66] | 10.1016/j.biosystemseng.2007.08.002—Tractor energy requirements in disc harrow systems | 37 | 2.31 |
3.3. Top Countries’ Research
3.4. Keyword Mapping
3.5. Trend Mapping
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoy, R.M.; Kocher, M.F. The Nebraska Tractor Test Laboratory: 100 Years of Service. In Proceedings of the Agricultural Equipment Technology Conference, Louisville, KY, USA, 10–12 February 2020; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2020; pp. 10–12. [Google Scholar]
- de Melo, R.R.; Tofoli, F.L.; Daher, S.; Antunes, F.L.M. Wheel Slip Control Applied to an Electric Tractor for Improving Tractive Efficiency and Reducing Energy Consumption. Sensors 2022, 22, 4527. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yang, Y.; Wang, D.; Cai, Y.; Lai, L. Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System. Agriculture 2022, 12, 436. [Google Scholar] [CrossRef]
- Abrahám, R.; Majdan, R.; Drlička, R. Comparison of tractor slip at three different driving wheels on grass. Agronomy Research 2017, 15, 1441–1454. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Pochi, D.; Fanigliulo, R.; Bisaglia, C. A Simplified Approach to the Evaluation of the Influences of Key Factors on Agricultural Tractor Fuel Consumption during Heavy Drawbar Tasks under Field Conditions. Agronomy 2022, 12, 1017. [Google Scholar] [CrossRef]
- Askari, M.; Abbaspour-Gilandeh, Y.; Taghinezhad, E.; Hegazy, R.; Okasha, M. Prediction and optimizing the multiple responses of the overall energy efficiency (OEE) of a tractor-implement system using response surface methodology. J. Terramech. 2022, 103, 11–17. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Lee, S.-D.; Baek, S.-M.; Baek, S.-Y.; Jeon, H.-H.; Lee, J.-H.; Kim, W.-S.; Shim, J.-Y.; Kim, Y.-J. Analysis of the Effect of Tillage Depth on the Working Performance of Tractor-Moldboard Plow System under Various Field Environments. Sensors 2022, 22, 2750. [Google Scholar] [CrossRef] [PubMed]
- Cutini, M.; Brambilla, M.; Bisaglia, C. Whole-Body Vibration in Farming: Background Document for Creating a Simplified Procedure to Determine Agricultural Tractor Vibration Comfort. Agriculture 2017, 7, 84. [Google Scholar] [CrossRef]
- Lanças, K.P.; Filho, A.C.M.; Moura, M.d.S.; Damasceno, F.A.d.J.; Balestrin, D.R. Agricultural Tractor Test. Rev. Cienc. Agron. 2020, 51, e20207750. [Google Scholar] [CrossRef]
- Fanigliulo, R.; Del Duca, L.; Fornaciari, L.; Grilli, R.; Tomasome, R.; Pochi, D. Efficiency of an ANC system in the tractor cabin under controlled engine workload. Noise Control. Eng. J. 2020, 68, 339–357. [Google Scholar] [CrossRef]
- Qin, J.; Wu, A.; Song, Z.; He, Z.; Suh, C.S.; Zhu, Z.; Li, Z. Recovering tractor stability from an intensive rollover with a momentum flywheel and active steering: System formulation and scale-model verification. Comput. Electron. Agric. 2021, 190, 106458. [Google Scholar] [CrossRef]
- Sandi, J.; Testa, J.V.P.; Martins, M.B.; Fiorese, D.A.; Lanças, K.P. Vibração ocorrente sobre o corpo inteiro do operador de trator agrícola em ensaio padronizado. J. Neotrop. Agric. 2018, 5, 54–61. [Google Scholar] [CrossRef]
- Culshaw, D. Rubber tracks for traction. J. Terramech. 1988, 25, 69–80. [Google Scholar] [CrossRef]
- Molari, G.; Bellentani, L.; Guarnieri, A.; Walker, M.; Sedoni, E. Performance of an agricultural tractor fitted with rubber tracks. Biosyst. Eng. 2012, 111, 57–63. [Google Scholar] [CrossRef]
- Kumar, S.; Noori, T.; Pandey, K. Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment. Energy 2019, 182, 48–56. [Google Scholar] [CrossRef]
- Filho, A.C.M.; de Medeiros, S.D.S.; Martins, M.B.; Moura, M.d.S.; Lanças, K.P. Can the Straw Remaining on the Ground Reduce the Wheelsets Impact on Sugarcane Crop? Sugar Tech 2022, 24, 1814–1820. [Google Scholar] [CrossRef]
- Mazetto, F.R.; Lanças, K.P.; Nagaoka, A.K.; Neto, P.C.; Guerra, S.P.S. Avaliação do contato pneu-solo em três modelos de pneus agrícolas. Eng. Agricola 2004, 24, 750–757. [Google Scholar] [CrossRef]
- Bertinatto, R.; Schlosser, J.F.; Bertollo, G.M.; Herzog, D.; Casali, L.; Borsatto, H.G. Typical performance behavior of a Diesel cycle agricultural tractor engine with electronic injection management and turbocharger. Cienc. Rural. 2022, 52, e20200966. [Google Scholar] [CrossRef]
- Hensh, S.; Tewari, V.; Upadhyay, G. A novel wireless instrumentation system for measurement of PTO (power take-off) torque requirement during rotary tillage. Biosyst. Eng. 2021, 212, 241–251. [Google Scholar] [CrossRef]
- Kim, W.-S.; Kim, Y.-J.; Park, S.-U.; Kim, Y.-S. Influence of soil moisture content on the traction performance of a 78-kW agricultural tractor during plow tillage. Soil Tillage Res. 2021, 207, 104851. [Google Scholar] [CrossRef]
- Davidson, D.; Fairlie, M.; Stuart, A. Development of a hydrogen-fuelled farm tractor. Int. J. Hydrog. Energy 1986, 11, 39–42. [Google Scholar] [CrossRef]
- Baek, S.-Y.; Baek, S.-M.; Jeon, H.-H.; Kim, W.-S.; Kim, Y.-S.; Sim, T.-Y.; Choi, K.-H.; Hong, S.-J.; Kim, H.; Kim, Y.-J. Traction Performance Evaluation of the Electric All-Wheel-Drive Tractor. Sensors 2022, 22, 785. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.; Zhao, S.; Han, B.; Lei, S.; Xu, L. Multi-Objective Optimization and Test of a Tractor Drive Motor. World Electr. Veh. J. 2022, 13, 43. [Google Scholar] [CrossRef]
- Wen, C.-K.; Zhang, S.-L.; Xie, B.; Song, Z.-H.; Li, T.-H.; Jia, F.; Han, J.-G. Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors. Energy 2022, 247, 123538. [Google Scholar] [CrossRef]
- Xie, B.; Wang, S.; Wu, X.; Wen, C.; Zhang, S.; Zhao, X. Design and hardware-in-the-loop test of a coupled drive system for electric tractor. Biosyst. Eng. 2022, 216, 165–185. [Google Scholar] [CrossRef]
- Cong, Q.; Yang, Z.; Xu, J.; Ma, B.; Chen, T.; Zhang, X.; Wang, L.; Ru, S. Design and Test of Load-Lifting Performance for Hydraulic Linkage of the High-Medium Horsepower Tractor. Appl. Sci. 2021, 11, 9758. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prashumn; Chandra, K. Di-ethyl ether-diesel blends fuelled off-road tractor engine: Part-I: Technical feasibility. Fuel 2022, 308, 121972. [Google Scholar] [CrossRef]
- Emaish, H.; Abualnaja, K.M.; Kandil, E.E.; Abdelsalam, N.R. Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages. Sci. Rep. 2021, 11, 9811. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.; Tewari, V. Seating discomfort for tractor operators—A critical review. Int. J. Ind. Ergon. 2000, 25, 661–674. [Google Scholar] [CrossRef]
- Giordano, D.M.; Facchinetti, D.; Pessina, D. Comfort efficiency of the front axle suspension in off-road operations of a medium-powered agricultural tractor. Contemp. Eng. Sci. 2015, 8, 1311–1325. [Google Scholar] [CrossRef]
- Cutini, M.; Brambilla, M.; Bisaglia, C.; Pochi, D.; Fanigliulo, R. Efficiency of Tractor Drawbar Power Taking into Account Soil-Tire Slippage. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: Proceedings of the International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA), Matera, Italy, 12–13 September 2019; Coppola, A., Di Renzo, G., Altieri, G., D’Antonio, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 409–417. [Google Scholar]
- Liu, D.; Tan, K.; Huang, S.; Goh, C.; Ho, W. On solving multiobjective bin packing problems using evolutionary particle swarm optimization. Eur. J. Oper. Res. 2008, 190, 357–382. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Chiaroni, D.; Del Vecchio, P.; Urbinati, A. Designing business models in circular economy: A systematic literature review and research agenda. Bus. Strat. Environ. 2020, 29, 1734–1749. [Google Scholar] [CrossRef]
- Seuring, S.; Gold, S. Conducting content-analysis based literature reviews in supply chain management. Supply Chain Manag. Int. J. 2012, 17, 544–555. [Google Scholar] [CrossRef]
- Daim, T.U.; Rueda, G.; Martin, H.; Gerdsri, P. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. Chang. 2006, 73, 981–1012. [Google Scholar] [CrossRef]
- Liu, W.; Gu, M.; Hu, G.; Li, C.; Liao, H.; Tang, L.; Shapira, P. Profile of developments in biomass-based bioenergy research: A 20-year perspective. Scientometrics 2014, 99, 507–521. [Google Scholar] [CrossRef]
- Andrade-Valbuena, N.A.; Merigo-Lindahl, J.M.; Olavarrieta, S. Bibliometric analysis of entrepreneurial orientation. World J. Entrep. Manag. Sustain. Dev. 2019, 15, 45–69. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef]
- Sharifi, A.; Simangan, D.; Kaneko, S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustain. Sci. 2021, 16, 1079–1095. [Google Scholar] [CrossRef]
- Mallett, R.; Hagen-Zanker, J.; Slater, R.; Duvendack, M. The benefits and challenges of using systematic reviews in international development research. J. Dev. Eff. 2012, 4, 445–455. [Google Scholar] [CrossRef]
- Chain, C.P.; dos Santos, A.C.; de Castro, L.G.; Prado, J.W.D. Bibliometric analysis of the quantitative methods applied to the measurement of industrial clusters. J. Econ. Surv. 2019, 33, 60–84. [Google Scholar] [CrossRef]
- Pollock, M.; Fernandes, R.M.; Becker, L.A.; Featherstone, R.; Hartling, L. What guidance is available for researchers conducting overviews of reviews of healthcare interventions? A scoping review and qualitative metasummary. Syst. Rev. 2016, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Bansal, P. Partnering Up: Including Managers as Research Partners in Systematic Reviews. Organ. Res. Methods 2023, 26, 262–291. [Google Scholar] [CrossRef]
- Souza, V.H.S.; Dias, G.L.; Santos, A.A.R.; Costa, A.L.G.; Santos, F.L.; Magalhães, R.R. Evaluation of the interaction between a harvester rod and a coffee branch based on finite element analysis. Comput. Electron. Agric. 2018, 150, 476–483. [Google Scholar] [CrossRef]
- Koutsos, T.M.; Menexes, G.C.; Dordas, C.A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Sci. Total. Environ. 2019, 682, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. Citation indexes for science; A new dimension in documentation through association of ideas. Int. J. Epidemiol. 2006, 35, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Kitchenham, B.; Charters, S.M. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Keele University: Keele, UK, 2007. [Google Scholar]
- Bakkalbasi, N.; Bauer, K.; Glover, J.; Wang, L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed. Digit. Libr. 2006, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, S.; Caputo, A.; Corvino, A.; Venturelli, A. Management research and the UN sustainable development goals (SDGs): A bibliometric investigation and systematic review. J. Clean. Prod. 2020, 276, 124033. [Google Scholar] [CrossRef]
- Nardi, P.; Di Matteo, G.; Palahi, M.; Mugnozza, G.S. Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach. PLoS ONE 2016, 11, e0155016. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Merton, R.K. The Sociology of Science in Europe, 1st ed.; Southern Illinois University Press: Carbondale, IL, USA, 1977. [Google Scholar]
- Van Eck, N.J.; Waltman, L.; Dekker, R.; van den Berg, J. A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 2405–2416. [Google Scholar] [CrossRef]
- World Energy Council. History of the World Energy Congress. 2022. Available online: https://www.worldenergy.org/experiences-events/world-energy-congress/history-of-the-world-energy-congress (accessed on 12 March 2023).
- Persson, S.P.E. Part Load and Varying-Speed Fuel Consumption of Tractors. Trans. ASAE 1969, 12, 0595–0597. [Google Scholar] [CrossRef]
- Macnab, J.E. Modeling the Effects of Tractive Effort on Agricultural Tractor Energy Requirements. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1976. [Google Scholar]
- Marques, L.S.; Ferraz, G.A.e.S.; Neto, J.M.; Magalhães, R.R.; de Lima, D.A.; Tsuchida, J.E.; Fuzatto, D.C. Agricultural Machinery Telemetry: A Bibliometric Analysis. Agriengineering 2022, 4, 939–950. [Google Scholar] [CrossRef]
- Craig, I.; Plume, A.; Mcveigh, M.; Pringle, J.; Amin, M. Do open access articles have greater citation impact? A critical review of the literature. J. Inf. 2007, 1, 239–248. [Google Scholar] [CrossRef]
- Kelly, C.; Jennions, M. The h index and career assessment by numbers. Trends Ecol. Evol. 2006, 21, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Naderbeigi, F.; Mokhtari, H.; Saberi, M.K.; Amiri, M.R.; Vakilimofrad, H.; Masoumi, L. Effect of Self-Citation on H-Index: A Study of Top 1% Highly Cited Iranian Scientists in Medical Sciences. J. Otorhinolaryngol. Facial Plast. Surg. 2022, 8, 1–9. [Google Scholar] [CrossRef]
- Wren, J.D.; Georgescu, C. Detecting anomalous referencing patterns in PubMed papers suggestive of author-centric reference list manipulation. Scientometrics 2022, 127, 5753–5771. [Google Scholar] [CrossRef] [PubMed]
- Kheiralla, A.; Yahya, A.; Zohadie, M.; Ishak, W. Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Tillage Res. 2004, 78, 21–34. [Google Scholar] [CrossRef]
- Grisso, R.D.; Kocher, M.F.; Vaughan, D.H. Predicting tractor fuel consumption. Appl. Eng. Agric. 2004, 20, 553–561. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; da Silva, J.M.; Pinheiro, A.; Carvalho, M. Tractor energy requirements in disc harrow systems. Biosyst. Eng. 2007, 98, 286–296. [Google Scholar] [CrossRef]
- Carballido, J.; Perez-Ruiz, M.; Emmi, L.; Agüera, J. Comparison of Positional Accuracy between RTK and RTX GNSS Based on the Autonomous Agricultural Vehicles under Field Conditions. Appl. Eng. Agric. 2014, 30, 361–366. [Google Scholar] [CrossRef]
- Hameed, I.; la Cour-Harbo, A.; Osen, O. Side-to-side 3D coverage path planning approach for agricultural robots to minimize skip/overlap areas between swaths. Robot. Auton. Syst. 2016, 76, 36–45. [Google Scholar] [CrossRef]
- Sun, S.; Li, C.; Paterson, A.H. In-Field High-Throughput Phenotyping of Cotton Plant Height Using LiDAR. Remote. Sens. 2017, 9, 377. [Google Scholar] [CrossRef]
- Battiato, A.; Diserens, E. Tractor traction performance simulation on differently textured soils and validation: A basic study to make traction and energy requirements accessible to the practice. Soil Tillage Res. 2017, 166, 18–32. [Google Scholar] [CrossRef]
- Tomic, M.; Savin, L.; Micic, R.; Simikic, M.; Furman, T. Effects of fossil diesel and biodiesel blends on the performances and emissions of agricultural tractor engines. Therm. Sci. 2013, 17, 263–278. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Q.; Zhu, Z. Evolutionary Overview of Land Consolidation Based on Bibliometric Analysis in Web of Science from 2000 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 3218. [Google Scholar] [CrossRef] [PubMed]
- Bulgakov, V.; Nadykto, V.; Ivanovs, S.; Dukulis, I. Improving the performance of a ploughing tractor by means of an auxiliary carriage with motorized axle. J. Agric. Eng. 2021, 52, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, B.; Wen, C.; Zhao, Y.; Du, Y.; Zhu, Z.; Song, Z.; Li, L. Intelligent ballast control system with active load- transfer for electric tractors. Biosyst. Eng. 2022, 215, 143–155. [Google Scholar] [CrossRef]
- Naygaonkar, S.S.; Desai, S.R. Experimental analysis of steering wheel vibrations of an agriculture tractor for reduction of hand-arm vibrations. Noise Vib. Worldw. 2022, 53, 308–321. [Google Scholar] [CrossRef]
- Naygaonkar, S.S.; Desai, S.R. Design and numerical investigation for reduction of hand-arm vibrations from steering wheel of an agricultural tractor. Int. J. Veh. Noise Vib. 2022, 18, 119. [Google Scholar] [CrossRef]
- Xue, L.; Jiang, H.; Zhao, Y.; Wang, J.; Wang, G.; Xiao, M. Fault diagnosis of wet clutch control system of tractor hydrostatic power split continuously variable transmission. Comput. Electron. Agric. 2022, 194, 106778. [Google Scholar] [CrossRef]
- Mocera, F.; Martini, V.; Somà, A. Comparative Analysis of Hybrid Electric Architectures for Specialized Agricultural Tractors. Energies 2022, 15, 1944. [Google Scholar] [CrossRef]
Journal | H_Index | G_Index | C | NP | PY_Start |
---|---|---|---|---|---|
Nongye Gongcheng Xuebao—CSAE | 15 | 18 | 596 | 55 | 2006 |
Applied Engineering in Agriculture—ASABE | 10 | 16 | 257 | 17 | 1989 |
Journal of Terramechanics | 9 | 11 | 205 | 11 | 1988 |
Biosystems Engineering | 8 | 13 | 199 | 13 | 2003 |
Nongye Jixie Xuebao—CSAE | 7 | 9 | 95 | 12 | 2013 |
Computers and Electronics in Agriculture | 6 | 9 | 100 | 9 | 1990 |
Soil and Tillage Research | 6 | 6 | 183 | 6 | 2004 |
Transactions of ASAE | 6 | 10 | 102 | 10 | 1977 |
Energy | 4 | 5 | 85 | 5 | 2014 |
Agronomy | 3 | 3 | 15 | 3 | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanças, K.P.; Marques Filho, A.C.; Santana, L.S.; Ferraz, G.A.e.S.; Faria, R.O.; Martins, M.B. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering 2024, 6, 2229-2248. https://doi.org/10.3390/agriengineering6030131
Lanças KP, Marques Filho AC, Santana LS, Ferraz GAeS, Faria RO, Martins MB. Agricultural Tractor Test: A Bibliometric Review. AgriEngineering. 2024; 6(3):2229-2248. https://doi.org/10.3390/agriengineering6030131
Chicago/Turabian StyleLanças, Kléber Pereira, Aldir Carpes Marques Filho, Lucas Santos Santana, Gabriel Araújo e Silva Ferraz, Rafael Oliveira Faria, and Murilo Battistuzzi Martins. 2024. "Agricultural Tractor Test: A Bibliometric Review" AgriEngineering 6, no. 3: 2229-2248. https://doi.org/10.3390/agriengineering6030131
APA StyleLanças, K. P., Marques Filho, A. C., Santana, L. S., Ferraz, G. A. e. S., Faria, R. O., & Martins, M. B. (2024). Agricultural Tractor Test: A Bibliometric Review. AgriEngineering, 6(3), 2229-2248. https://doi.org/10.3390/agriengineering6030131