Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications
Abstract
:1. Introduction
2. Composition of Nutrient Solutions Used in Hydroponics
3. State-of-the-Art Sensors for NPK Ion Measurement
- Electrochemical sensors consistently demonstrate superior sensitivity and flexibility across all ion targets, making them a reliable choice for precise nutrient monitoring. For instance, voltammetry-based sensors achieve LODs as low as 10−⁹ M, particularly for nitrate and potassium ions.
- Optical sensors, while less sensitive than electrochemical methods, excel in non-invasive and portable applications. Their compatibility with field monitoring and lab-on-a-chip technologies makes them suitable for on-site measurements, especially in resource-limited settings.
- Transistor-based sensors offer the best performance for long-term monitoring, with lifespans extending up to 6 months for ammonium and potassium detection. Their durability and stability make them ideal for extended deployments in agriculture or environmental monitoring.
- Linear range performance varies significantly between methods. Electrochemical sensors provide broad ranges suitable for various nutrient concentrations, whereas optical sensors focus on narrower ranges with specialized applications.
- Lifespan limitations remain a challenge, particularly for optical and certain electrochemical sensors, which may require frequent replacement or recalibration. However, recent innovations such as multi-layered coatings and nanomaterials are extending operational durability.
3.1. Nitrogen Sensors for Hydroponics
3.1.1. Nitrate Sensors for Hydroponics
3.1.2. Ammonium Sensors for Hydroponics
3.2. Phosphorus Sensors for Hydroponics
3.3. Potassium Sensors for Hydroponics
4. Research Trends in Nutrient Solution Monitoring Systems
5. Considerations for Advanced NPK Ion Measurement in Hydroponics
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perez, S.L.; Ferro, R.B.; Corrêa, B.; Casarin, R.; Corrêa, T.Q.; Blanco, K.C.; Bagnato, V.S. Enhanced Vegetable Production in Hydroponic Systems Using Decontamination of Closed Circulating Fluid. Sci. Rep. 2024, 14, 602. [Google Scholar] [CrossRef] [PubMed]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Maboko, M.; Du Plooy, C.; Bertling, I. Comparative Performance of Tomato Cultivars Cultivated in Two Hydroponic Production Systems. S. Afr. J. Plant Soil 2011, 28, 97–102. [Google Scholar] [CrossRef]
- Sharma, A.; Manpoong, C.; Devadas, V.; Kartha, B.D.; Pandey, H.; Wangsu, M. Crop Hydroponics, Phyto-Hydroponics, Crop Production, and Factors Affecting Soilless Culture. ACS Agric. Sci. Technol. 2022, 2, 1134–1150. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Nutrient Solutions for Soilless Cultures. In Plant Nutrition of Greenhouse Crops; Elsevier: Amsterdam, Netherlands, 2009; pp. 257–275. [Google Scholar]
- Hosseinzadeh, S.; Verheust, Y.; Bonarrigo, G.; Van Hulle, S. Closed Hydroponic Systems: Operational Parameters, Root Exudates Occurrence and Related Water Treatment. Rev. Environ. Sci. Biotechnol. 2017, 16, 59–79. [Google Scholar] [CrossRef]
- Cho, W.-J.; Gang, M.-S.; Jung, D.-H. Decision-Tree-Based Ion-Specific Dosing Algorithm for Enhancing Closed Hydroponic Efficiency and Reducing Carbon Emissions. Front. Plant Sci. 2023, 14, 1301490. [Google Scholar] [CrossRef]
- Wang, X.; Fang, W.; Zhao, Z. Establishment of a Model and System for Secondary Fertilization of Nutrient Solution and Residual Liquid. Sustainability 2023, 15, 1851. [Google Scholar] [CrossRef]
- Cho, W.-J.; Kim, H.-J.; Jung, D.-H.; Kim, D.-W.; Ahn, T.I.; Son, J.-E. On-Site Ion Monitoring System for Precision Hydroponic Nutrient Management. Comput. Electron. Agric. 2018, 146, 51–58. [Google Scholar] [CrossRef]
- Ban, B.; Ryu, D.; Lee, M. Machine Learning Approach to Remove Ion Interference Effect in Agricultural Nutrient Solutions. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 16–18 October 2019; pp. 1156–1161. [Google Scholar]
- Sinfield, J.V.; Fagerman, D.; Colic, O. Evaluation of Sensing Technologies for On-the-Go Detection of Macro-Nutrients in Cultivated Soils. Comput. Electron. Agric. 2010, 70, 1–18. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Kałuża, D.; Michalska, A.; Maksymiuk, K. Voltammetric Properties of All-Solid-State Ion-Selective Electrodes with Multiwalled Carbon Nanotubes-Poly(3-Octylthiophene-2,5-Diyl) Nanocomposite Transducer. Electroanalysis 2019, 31, 2379–2386. [Google Scholar] [CrossRef]
- Torrezani, L.; Saczk, A.A.; Firmino de Oliveira, M.; Stradiotto, N.R.; Okumura, L.L. Voltammetric Determination of Phosphate in Brazilian Biodiesel Using Two Different Electrodes. Electroanalysis 2011, 23, 2456–2461. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, X.; Shi, H. A Potentiometric Cobalt-Based Phosphate Sensor Based on Screen-Printing Technology. Front. Environ. Sci. Eng. 2014, 8, 945–951. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Lee, J.-W.; Lee, J.-Y.; Myung, N.V.; Kwon, S.H.; Lee, K.H. Highly Stable Potentiometric Sensor with Reduced Graphene Oxide Aerogel as a Solid Contact for Detection of Nitrate and Calcium Ions. J. Electroanal. Chem. 2021, 897, 115553. [Google Scholar] [CrossRef]
- Gilbert, L.; Jenkins, A.T.A.; Browning, S.; Hart, J. Development of an Amperometric, Screen-Printed, Single-Enzyme Phosphate Ion Biosensor and Its Application to the Analysis of Biomedical and Environmental Samples. Sens. Actuators B Chem. 2011, 160, 1322–1327. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Lan, W.-J.; Zou, X.U.; Hamedi, M.M.; Hu, J.; Parolo, C.; Maxwell, E.J.; Bühlmann, P.; Whitesides, G.M. Potentiometric Ion Sensing. Anal. Chem. 2014, 86, 9548–9553. [Google Scholar] [CrossRef]
- Suman, M.; Sangma, P.D.; Singh, D. Role of Micronutrients (Fe, Zn, B, Cu, Mg, Mn, and Mo) in Fruit Crops. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 3240–3250. [Google Scholar] [CrossRef]
- Sidhu, M.K.; Raturi, H.C.; Kachwaya, D.S.; Sharma, A. Role of Micronutrients in Vegetable Production: A Review. J. Pharmacogn. Phytochem. 2019, 8, 332–340. [Google Scholar]
- Marr, C.W. Hydroponic Systems. In Greenhouse Vegetable Production; Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 1994. [Google Scholar]
- Swain, A.; Chatterjee, S.; Vishwanath, M. Hydroponics in Vegetable Crops: A Review. Pharma Innov. J. 2021, 10, 629–634. [Google Scholar]
- Debangshi, U. Hydroponics—An Overview. Chron. Bioresour. Manag. 2021, 5, 110–114. [Google Scholar]
- Sousa, R.D.; Bragança, L.; Da Silva, M.V.; Oliveira, R.S. Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Houston, L.L. Nutrient Uptake and Management Strategies in Recirculating Hydroponic Systems. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2021. [Google Scholar]
- Smith, G.; Johnston, C.; Cornforth, I. Comparison of Nutrient Solutions for Growth of Plants in Sand Culture. New Phytol. 1983, 94, 537–548. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 7th ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Mattson, N.; Lieth, J.H. Liquid Culture Hydroponic System Operation. In Soilless Culture; Elsevier: Amsterdam, Netherlands, 2019; pp. 567–585. [Google Scholar]
- Amini, N.; Maleki, A.; Maleki, P. Electrochemical Detection of Nitrate Ions via Reduction of NO2− and Oxidation of NO Reactions Based on Cu@TiO2 Core-Shell/Nafion/Polyalizarin Immobilized Electrode. Mater. Chem. Phys. 2021, 264, 124384. [Google Scholar] [CrossRef]
- Patella, B.; Russo, R.; O’Riordan, A.; Aiello, G.; Sunseri, C.; Inguanta, R. Copper Nanowire Array as Highly Selective Electrochemical Sensor of Nitrate Ions in Water. Talanta 2021, 221, 121643. [Google Scholar] [CrossRef]
- Hanane, K.; Messaoud, B.; Houcine, B.; Moncef, T. Highly Sensitive Modified Glassy Carbon Sensor Based on TDAN for Nitrate Detection in Real Water. Monatsh. Chem. 2020, 151, 153–158. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhu, R.; Tao, Y.; Chen, Y.; Liu, Q.; Liu, X.; Wang, D. Woven Fiber Organic Electrochemical Transistors Based on Multiwalled Carbon Nanotube Functionalized PEDOT Nanowires for Nondestructive Detection of Potassium Ions. Mater. Sci. Eng. B 2022, 278, 115657. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, Y.; Linthicum, W.; Liu, F.; Beringhs, A.O.R.; Dang, Y.; Xu, Z.; Chang, S.-Y.; Ling, J.; Huey, B.D. Toward Long-Term Accurate and Continuous Monitoring of Nitrate in Wastewater Using Poly(Tetrafluoroethylene)–Solid-State Ion-Selective Electrodes (S-ISEs). ACS Sens. 2020, 5, 3182–3193. [Google Scholar] [CrossRef]
- Amali, R.; Lim, H.; Ibrahim, I.; Zainal, Z.; Ahmad, S. Silver Nanoparticles-Loaded Copper (II)-Terephthalate Framework Nanocomposite as a Screen-Printed Carbon Electrode Modifier for Amperometric Nitrate Detection. J. Electroanal. Chem. 2022, 918, 116440. [Google Scholar] [CrossRef]
- Nightingale, A.M.; Hassan, S.-U.; Warren, B.M.; Makris, K.; Evans, G.W.; Papadopoulou, E.; Coleman, S.; Niu, X. A Droplet Microfluidic-Based Sensor for Simultaneous In Situ Monitoring of Nitrate and Nitrite in Natural Waters. Environ. Sci. Technol. 2019, 53, 9677–9685. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, J.; Hu, X.; Chen, L.; Zuo, Y.; Yang, Y.; Jiang, F.; Sun, C.; Zhao, W.; Han, X. Rapid Nitrate Determination with a Portable Lab-on-Chip Device Based on Double Microstructured Assisted Reactors. Lab Chip 2021, 21, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ding, J.; Cui, G.; Zhao, C.; Suo, H.; He, D. A Novel Electrochemical Ammonia–Nitrogen Sensor Based on Carbon Cloth-Supported Hierarchical Pt Nanosheets-Ni(OH)2 Nanosheets Nanocomposites. Chem. Eng. Sci. 2021, 239, 116634. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Peng, X.; Cui, Q.; He, D.; Zhao, C.; Suo, H. Fabrication of a Ni Foam-Supported Platinum Nanoparticles-Silver/Polypyrrole Electrode for Aqueous Ammonia Sensing. Synth. Met. 2020, 259, 116257. [Google Scholar] [CrossRef]
- Lahari, S.A.; Amreen, K.; Dubey, S.K.; Ponnalagu, R.; Goel, S. Modified Ultra Micro-Carbon Electrode for Efficient Ammonia Sensing for Water Quality Assessment. IEEE Trans. NanoBiosci. 2022, 22, 301–307. [Google Scholar] [CrossRef]
- Gallardo-Gonzalez, J.; Baraket, A.; Boudjaoui, S.; Metzner, T.; Hauser, F.; Rößler, T.; Krause, S.; Zine, N.; Streklas, A.; Alcácer, A. A Fully Integrated Passive Microfluidic Lab-on-a-Chip for Real-Time Electrochemical Detection of Ammonium: Sewage Applications. Sci. Total Environ. 2019, 653, 1223–1230. [Google Scholar] [CrossRef]
- Gil, R.L.; Amorim, C.G.; Cuartero, M. Addressing the Detection of Ammonium Ion in Environmental Water Samples via Tandem Potentiometry–Ion Chromatography. ACS Meas. Sci. Au 2022, 2, 199–207. [Google Scholar] [CrossRef]
- Xu, L.; Zhong, L.; Tang, Y.; Han, T.; Liu, S.; Sun, Z.; Bao, Y.; Wang, H.; He, Y.; Wang, W. Beyond Nonactin: Potentiometric Ammonium Ion Sensing Based on Ion-Selective Membrane-Free Prussian Blue Analogue Transducers. Anal. Chem. 2022, 94, 10487–10496. [Google Scholar] [CrossRef]
- Korent, A.; Trafela, Š.; Soderžnik, K.Ž.; Samardžija, Z.; Šturm, S.; Rožman, K.Ž. Au-Decorated Electrochemically Synthesised Polyaniline-Based Sensory Platform for Amperometric Detection of Aqueous Ammonia in Biological Fluids. Electrochim. Acta 2022, 430, 141034. [Google Scholar] [CrossRef]
- Joly, M.; Marlet, M.; Durieu, C.; Bene, C.; Launay, J.; Temple-Boyer, P. Study of Chemical Field Effect Transistors for the Detection of Ammonium and Nitrate Ions in Liquid and Soil Phases. Sens. Actuators B Chem. 2022, 351, 130949. [Google Scholar] [CrossRef]
- Fornells, E.; Murray, E.; Waheed, S.; Morrin, A.; Diamond, D.; Paull, B.; Breadmore, M. Integrated 3D Printed Heaters for Microfluidic Applications: Ammonium Analysis within Environmental Water. Anal. Chim. Acta 2020, 1098, 94–101. [Google Scholar] [CrossRef]
- Arvas, M.B.; Gorduk, O.; Gencten, M.; Sahin, Y. Preparation of a Novel Electrochemical Sensor for Phosphate Detection Based on a Molybdenum Blue Modified Poly(Vinyl Chloride) Coated Pencil Graphite Electrode. Anal. Methods 2019, 11, 3874–3881. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Li, D.; Compton, R.G. Amperometric Environmental Phosphate Sensors. ACS Sens. 2021, 6, 3284–3294. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Xia, D.; Xu, J.; Ye, C.; Zhang, D.; Deng, D.; Zhang, J.; Huang, G. Sequential Injection-Square Wave Voltammetric Sensor for Phosphate Detection in Freshwater Using Silanized Multi-Walled Carbon Nanotubes and Gold Nanoparticles. Microchem. J. 2021, 167, 106311. [Google Scholar] [CrossRef]
- Sedaghat, S.; Jeong, S.; Zareei, A.; Peana, S.; Glassmaker, N.; Rahimi, R. Development of a Nickel Oxide/Oxyhydroxide-Modified Printed Carbon Electrode as an All Solid-State Sensor for Potentiometric Phosphate Detection. New J. Chem. 2019, 43, 18619–18628. [Google Scholar] [CrossRef]
- Xu, K.; Wu, B.; Wan, J.; Li, Y.; Li, M. A Potentiometric Phosphate Ion Sensor Based on Electrochemically Modified Nickel Electrode. Electrochim. Acta 2022, 412, 140065. [Google Scholar] [CrossRef]
- Xu, K.; Li, Y.; Li, M. Potentiometric Phosphate Ion Sensor Based on Electrochemical Modified Tungsten Electrode. ACS Omega 2021, 6, 13795–13801. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Z.; Dou, X.; Song, Y.-Y. Needle-Like Co3O4 Nanoarrays as a Dual-Responsive Amperometric Sensor for Enzyme-Free Detection of Glucose and Phosphate Anion. J. Electroanal. Chem. 2021, 897, 115605. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.; Alahi, M.E.E.; Mukhopadhyay, S. Design and Development of an IoT-Enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sens. Actuators A Phys. 2021, 330, 112861. [Google Scholar] [CrossRef]
- Bhat, K.S.; Nakate, U.T.; Yoo, J.-Y.; Wang, Y.; Mahmoudi, T.; Hahn, Y.-B. Nozzle-Jet-Printed Silver/Graphene Composite-Based Field-Effect Transistor Sensor for Phosphate Ion Detection. ACS Omega 2019, 4, 8373–8380. [Google Scholar] [CrossRef]
- Zhu, J.; Han, G.; Hu, X.; Zuo, Y.; Chen, L.; Wang, F.; Yang, Y.; Jiang, F.; Sun, C.; Zhao, W. A Portable and Accurate Phosphate Sensor Using a Gradient Fabry–Pérot Array. ACS Sens. 2020, 5, 1381–1388. [Google Scholar] [CrossRef]
- Beaton, A.D.; Schaap, A.M.; Pascal, R.; Hanz, R.; Martincic, U.; Cardwell, C.L.; Morris, A.; Clinton-Bailey, G.; Saw, K.; Hartman, S.E. Lab-On-Chip for In Situ Analysis of Nutrients in the Deep Sea. ACS Sens. 2022, 7, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, M.; Cooper, J.F.; Clarke, S.J.; Rasche, B.; Compton, R.G. Designing Selective Electrode Materials for Electroanalysis–New Tungsten Bronzes as Selective Potassium Hosts. ChemElectroChem 2020, 7, 3160–3167. [Google Scholar] [CrossRef]
- Yin, T.; Pan, D.; Qin, W. All-Solid-State Polymeric Membrane Ion-Selective Miniaturized Electrodes Based on a Nanoporous Gold Film as Solid Contact. Anal. Chem. 2014, 86, 11038–11044. [Google Scholar] [CrossRef] [PubMed]
- Ozer, T.; Henry, C.S. All-Solid-State Potassium-Selective Sensor Based on Carbon Black Modified Thermoplastic Electrode. Electrochim. Acta 2022, 404, 139762. [Google Scholar] [CrossRef]
- Węgrzyn, K.; Michalska, A.; Maksymiuk, K. Electrochemical Properties and Analytical Advantages of Potassium-Selective Sensor with Tungsten Trioxide Solid Contact. J. Electroanal. Chem. 2023, 928, 117061. [Google Scholar] [CrossRef]
- Thuy, N.T.D.; Zhao, G.; Wang, X.; Awuah, E.; Zhang, L. Potassium Ion-Selective Electrode with a Sensitive Ion-to-Electron Transducer Composed of Porous Laser-Induced Graphene and MoS2 Fabricated by One-Step Direct Laser Writing. Electroanalysis 2023, 35, e202200194. [Google Scholar] [CrossRef]
- Fakih, I.; Centeno, A.; Zurutuza, A.; Ghaddab, B.; Siaj, M.; Szkopek, T. High-Resolution Potassium Sensing with Large-Area Graphene Field-Effect Transistors. Sens. Actuators B Chem. 2019, 291, 89–95. [Google Scholar] [CrossRef]
- Potdar, R.P.; Khollam, Y.B.; Shaikh, S.F.; Raut, R.W.; Pandit, B.; More, P.S. Evanescent Wave Sensor for Potassium Ion Detection with Special Reference to Agricultural Application. J. Photochem. Photobiol. A Chem. 2023, 441, 114707. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of Nitrogen for Plant Growth and Development: A Review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Van der Boon, J.; Steenhuizen, J.; Steingrover, E.G. Growth and Nitrate Concentration of Lettuce as Affected by Total Nitrogen and Chloride Concentration, NH4/NO3 Ratio and Temperature of the Recirculating Nutrient Solution. J. Hortic. Sci. 1990, 65, 309–321. [Google Scholar] [CrossRef]
- Essousi, H.; Barhoumi, H.; Bibani, M.; Ktari, N.; Wendler, F.; Al-Hamry, A.; Kanoun, O. Ion-Imprinted Electrochemical Sensor Based on Copper Nanoparticles-Polyaniline Matrix for Nitrate Detection. J. Sens. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Gautam, S.K.; Panda, S. Field Effect Characteristics and Gas Sensing Properties of Vertically Grown PANI Nanofibers. Org. Electron. 2023, 123, 106938. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, Y.; Zhou, T.; Liu, L.; Chen, Q.; Gao, B.; Zhang, T. Self-Assembly Polyaniline Films for the High-Performance Ammonia Gas Sensor. Sens. Actuators B Chem. 2022, 365, 131928. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent Advances in Solid-Contact Ion-Selective Electrodes: Functional Materials, Transduction Mechanisms, and Development Trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef]
- Cuartero, M.; Colozza, N.; Fernández-Pérez, B.M.; Crespo, G.A. Why Ammonium Detection is Particularly Challenging but Insightful with Ionophore-Based Potentiometric Sensors–An Overview of the Progress in the Last 20 Years. Analyst 2020, 145, 3188–3210. [Google Scholar] [CrossRef]
- Chou, N.-H.; Chou, J.-C.; Sun, T.-P.; Hsiung, S.-K. All Solid-State Potentiometric Biosensors for Creatinine Determination Based on pH and Ammonium Electrodes. IEEE Sens. J. 2009, 9, 665–672. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Z.; Huang, Y.; Dai, Z.; Wang, X.; Lee, M.; Bagtzoglou, C.; Brückner, C.; Lei, Y.; Li, B. Real-Time In Situ Auto-Correction of K+ Interference for Continuous and Long-Term NH4+ Monitoring in Wastewater Using Solid-State Ion Selective Membrane (S-ISM) Sensor Assembly. Environ. Res. 2020, 189, 109891. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Q.; Hadden, J.H.; Xie, F.; Riley, D.J. Pd Ion-Exchange and Ammonia Etching of a Prussian Blue Analogue to Produce a High-Performance Water-Splitting Catalyst. Adv. Funct. Mater. 2021, 31, 2008989. [Google Scholar] [CrossRef]
- Jin, X.; Saha, A.; Jiang, H.; Oduncu, M.R.; Yang, Q.; Sedaghat, S.; Maize, K.; Allebach, J.P.; Shakouri, A.; Glassmaker, N. Steady-State and Transient Performance of Ion-Sensitive Electrodes Suitable for Wearable and Implantable Electrochemical Sensing. IEEE Trans. Biomed. Eng. 2021, 69, 96–107. [Google Scholar] [CrossRef]
- Matse, D.T.; Huang, C.-H.; Huang, Y.-M.; Yen, M.-Y. Effects of Coinoculation of Rhizobium with Plant Growth Promoting Rhizobacteria on the Nitrogen Fixation and Nutrient Uptake of Trifolium Repens in Low Phosphorus Soil. J. Plant Nutr. 2020, 43, 739–752. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate Solubilizing Microbes: Sustainable Approach for Managing Phosphorus Deficiency in Agricultural Soils. SpringerPlus 2013, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- De Rijck, G.; Schrevens, E. pH Influenced by the Elemental Composition of Nutrient Solutions. J. Plant Nutr. 1997, 20, 911–923. [Google Scholar] [CrossRef]
- Malkawi, S.; Hagare, D.; Maheshwari, B. Phosphorus Recovery from Hydroponics Waste Nutrient Solution and Its Economic Potential. Resour. Conserv. Recycl. 2024, 209, 107710. [Google Scholar] [CrossRef]
- Chen, G.; Xiao, S.; Lorke, A.; Liu, J.; Zhang, P. Assessment of a Solid-State Phosphate Selective Electrode Based on Tungsten. J. Electrochem. Soc. 2018, 165, B787–B792. [Google Scholar] [CrossRef]
- Xu, K.; Kitazumi, Y.; Kano, K.; Sasaki, T.; Shirai, O. Fabrication of a Phosphate Ion Selective Electrode Based on Modified Molybdenum Metal. Anal. Sci. 2020, 36, 201–205. [Google Scholar] [CrossRef]
- Xu, K.; Kitazumi, Y.; Kano, K.; Shirai, O. Phosphate Ion Sensor Using a Cobalt Phosphate Coated Cobalt Electrode. Electrochim. Acta 2018, 282, 242–246. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; Lee, W.H.; Cho, H.J. Sensor Response Mechanism and Characterization of Co-Based Phosphate Nanosensors. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Republic of Korea, 12–14 March 2018; pp. 1–5. [Google Scholar]
- Zeitoun, R.; Biswas, A. Electrochemical Mechanisms in Potentiometric Phosphate Sensing Using Pure Cobalt, Molybdenum and Their Alloy for Environmental Applications. Electroanalysis 2021, 33, 421–430. [Google Scholar] [CrossRef]
- Kim, H.-J.; Hummel, J.W.; Birrell, S.J.; Sudduth, K.A. Evaluation of Phosphate Ion-Selective Membranes for Real-Time Soil Nutrient Sensing. In Proceedings of the 2005 ASAE Annual Meeting, Tampa, FL, USA, 17–20 July 2005; p. 1. [Google Scholar]
- Barus, C.; Romanytsia, I.; Striebig, N.; Garçon, V. Toward an In Situ Phosphate Sensor in Seawater Using Square Wave Voltammetry. Talanta 2016, 160, 417–424. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahn, M.-S.; Hahn, Y.-B. ZnO Nanorods Array Based Field-Effect Transistor Biosensor for Phosphate Detection. J. Colloid Interface Sci. 2017, 498, 292–297. [Google Scholar] [CrossRef]
- Talarico, D.; Arduini, F.; Amine, A.; Moscone, D.; Palleschi, G. Screen-Printed Electrode Modified with Carbon Black Nanoparticles for Phosphate Detection by Measuring the Electroactive Phosphomolybdate Complex. Talanta 2015, 141, 267–272. [Google Scholar] [CrossRef]
- Kolliopoulos, A.V.; Kampouris, D.K.; Banks, C.E. Rapid and Portable Electrochemical Quantification of Phosphorus. Anal. Chem. 2015, 87, 4269–4274. [Google Scholar] [CrossRef] [PubMed]
- Ngernpradab, P.; Insin, N.; Wongravee, K.; Srisa-Art, M. A Novel PDMS-Based Digital Magnetofluidic Platform for Lab-on-a-Chip Applications. Talanta 2024, 266, 125053. [Google Scholar] [CrossRef] [PubMed]
- Magar, H.S.; Hassan, R.Y.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic Lab-on-a-Chip Platforms for Environmental Monitoring. TrAC Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Wang, R.; Prabhakar, A.; Iglesias, R.A.; Xian, X.; Shan, X.; Tsow, F.; Forzani, E.S.; Tao, N. A Microfluidic-Colorimetric Sensor for Continuous Monitoring of Reactive Environmental Chemicals. IEEE Sens. J. 2011, 12, 1529–1535. [Google Scholar] [CrossRef]
- Pinto, V.; Araújo, C.; Sousa, P.; Gonçalves, L.; Minas, G. A Low-Cost Lab-on-a-Chip Device for Marine pH Quantification by Colorimetry. Sens. Actuators B Chem. 2019, 290, 285–292. [Google Scholar] [CrossRef]
- Cho, Y.B.; Jeong, S.H.; Chun, H.; Kim, Y.S. Selective Colorimetric Detection of Dissolved Ammonia in Water via Modified Berthelot’s Reaction on Porous Paper. Sens. Actuators B Chem. 2018, 256, 167–175. [Google Scholar] [CrossRef]
- Lace, A.; Byrne, A.; Bluett, S.; Malaquin, L.; Raimbault, V.; Courson, R.; Hayat, Z.; Moore, B.; Murray, E. Ion Chromatograph with Three-Dimensional Printed Absorbance Detector for Indirect Ultraviolet Absorbance Detection of Phosphate in Effluent and Natural Waters. J. Sep. Sci. 2022, 45, 1042–1050. [Google Scholar] [CrossRef]
- Saito, S.; Uozumi, N. Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients. Front. Plant Sci. 2020, 11, 44. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef]
- Pandey, P.C.; Singh, G.; Srivastava, P.K. Electrochemical Synthesis of Tetraphenylborate Doped Polypyrrole and Its Applications in Designing a Novel Zinc and Potassium Ion Sensor. Electroanalysis 2002, 14, 427–432. [Google Scholar] [CrossRef]
- Richa, A.; Fizir, M.; Touil, S. Advanced Monitoring of Hydroponic Solutions Using Ion-Selective Electrodes and the Internet of Things: A Review. Environ. Chem. Lett. 2021, 19, 3445–3463. [Google Scholar] [CrossRef]
- Chowdhury, M.E.; Khandakar, A.; Ahmed, S.; Al-Khuzaei, F.; Hamdalla, J.; Haque, F.; Reaz, M.B.I.; Al Shafei, A.; Al-Emadi, N. Design, Construction and Testing of IoT Based Automated Indoor Vertical Hydroponics Farming Test-Bed in Qatar. Sensors 2020, 20, 5637. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Jeng, S.-Y.; Lin, C.-J. Fuzzy Logic Controller for Automating Electrical Conductivity and pH in Hydroponic Cultivation. Appl. Sci. 2021, 12, 405. [Google Scholar] [CrossRef]
- Vincentdo, V.; Surantha, N. Nutrient Film Technique-Based Hydroponic Monitoring and Controlling System Using ANFIS. Electronics 2023, 12, 1446. [Google Scholar] [CrossRef]
- Cho, W.-J.; Kim, H.-J.; Jung, D.-H.; Han, H.-J.; Cho, Y.-Y. Hybrid Signal-Processing Method Based on Neural Network for Prediction of NO3, K, Ca, and Mg Ions in Hydroponic Solutions Using an Array of Ion-Selective Electrodes. Sensors 2019, 19, 5508. [Google Scholar] [CrossRef]
- Jung, D.-H.; Kim, H.-J.; Cho, W.-J.; Park, S.H.; Yang, S.-H. Validation Testing of an Ion-Specific Sensing and Control System for Precision Hydroponic Macronutrient Management. Comput. Electron. Agric. 2019, 156, 660–668. [Google Scholar] [CrossRef]
- Miras, M.; García, M.S.; Martínez, V.; Ortuño, J.Á. Inexpensive Ion-Selective Electrodes for the Simultaneous Monitoring of Potassium and Nitrate Concentrations in Nutrient Solutions. Anal. Methods 2021, 13, 3511–3520. [Google Scholar] [CrossRef]
- Bhat, K.S.; Ahmad, R.; Mahmoudi, T.; Hahn, Y.-B. High Performance Chemical Sensor with Field-Effect Transistors Array for Selective Detection of Multiple Ions. Chem. Eng. J. 2021, 417, 128064. [Google Scholar] [CrossRef]
- Tuan, V.N.; Dinh, T.D.; Zhang, W.; Khattak, A.M.; Le, A.T.; Saeed, I.A.; Gao, W.; Wang, M. A Smart Diagnostic Tool Based on Deep Kernel Learning for On-Site Determination of Phosphate, Calcium, and Magnesium Concentration in a Hydroponic System. RSC Adv. 2021, 11, 11177–11191. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Z.; Zhu, Y.; Castellano, M.J.; Dong, L. Miniature Multi-Ion Sensor Integrated with Artificial Neural Network. IEEE Sens. J. 2021, 21, 25606–25615. [Google Scholar] [CrossRef]
- Nakatani, N.; Kozaki, D.; Mori, M.; Tanaka, K. Recent Progress and Applications of Ion-Exclusion/Ion-Exchange Chromatography for Simultaneous Determination of Inorganic Anions and Cations. Anal. Sci. 2012, 28, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, D.; Sago, Y.; Fujiwara, T.; Mori, M.; Kubono, C.; Koga, T.; Mitsui, Y.; Tachibana, T. Ion-Exclusion/Cation-Exchange Chromatography Using Dual-Ion-Exchange Groups for Simultaneous Determination of Inorganic Ionic Nutrients in Fertilizer Solution Samples for the Management of Hydroponic Culture. Agronomy 2021, 11, 1847. [Google Scholar] [CrossRef]
- Monteiro-Silva, F.; Jorge, P.A.; Martins, R.C. Optical Sensing of Nitrogen, Phosphorus and Potassium: A Spectrophotometrical Approach Toward Smart Nutrient Deployment. Chemosensors 2019, 7, 51. [Google Scholar] [CrossRef]
- Soares, R.R.; Milião, G.L.; Pola, C.C.; Jing, D.; Opare-Addo, J.; Smith, E.; Claussen, J.C.; Gomes, C.L. Insights into Solid-Contact Ion-Selective Electrodes Based on Laser-Induced Graphene: Key Performance Parameters for Long-Term and Continuous Measurements. Microchim. Acta 2024, 191, 615. [Google Scholar] [CrossRef]
- Noviana, E.; Ozer, T.; Carrell, C.S.; Link, J.S.; McMahon, C.; Jang, I.; Henry, C.S. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem. Rev. 2021, 121, 11835–11885. [Google Scholar] [CrossRef]
- Yan-Qi, L.; Liang, F. Progress in Paper-Based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar]
Nutrientm mol/L | Arnon (1938) [27] | Steiner (1961) | Bollard (1966) | Yamazaki (1984) | Resh (2012) [28] | Mattson (2013) [29] | Reference Value * [26] | |
---|---|---|---|---|---|---|---|---|
N | NO3− | 3.2739 | 2.9675 | 1.8063 | 2.1772 | 9.9992 | 2.6611 | 2.6256 ± 0.78 |
NH4+ | 0.7761 | 1.9403 | 6.2091 | 0.8316 | 0.9979 | 1.3860 | 0.5156 ± 0.79 | |
H2PO4− | 0.3227 | 0.4060 | 1.6656 | 2.9981 | 0.5205 | 0.3227 | 0.5195 ± 0.24 | |
K+ | 6.4964 | 13.1464 | 3.9899 | 5.9849 | 5.3711 | 5.3711 | 6.2407 ± 2.99 |
Target Ion | Method | LOD | Linear Range | Lifespan | Feature | Ref | |
---|---|---|---|---|---|---|---|
Nitrate | Electrochemical | Voltammetry | 2.1 × 10−6 M | 5 × 10−6–7.5 × 10−3 M | 21 days | Modifying the electrode surface using Cu@TiO2 core–shell structures. | [30] |
10−5 M | 10−5–5 × 10−5 M, 5 × 10−5–1.5 × 10−3 M | - | Copper nanowire arrays were obtained via galvanic deposition. | [31] | |||
10−9 M | 10−9–10−5 M | - | Gold nanoparticles, in conjunction with tetradodecyl ammonium nitrate, were applied to the sensor. | [32] | |||
8 × 10−6 M | 2 × 10−5–6 × 10−3 M | 7 days | A micro-needle sensor based on copper microspheres and polyaniline film was fabricated through the electrodeposition method. | [33] | |||
Potentiometry | 7.59 × 10−7 M | 10−6–10−2 M | - | Reduced graphene oxide aerogel with a porous structure was synthesized to develop SC-ISEs for the detection of nitrate and calcium. | [16] | ||
1 mg/L M | 1–64 mg/L | 24 days | Solid-state ion-selective electrodes for monitoring nitrate in wastewater were developed using poly(tetrafluoroethylene, PTFE). | [34] | |||
Amperometry | 2.4 × 10−7 M | 5 × 10−7–10−3 M | 2 weeks | Silver nanoparticles and copper (II)-terephthalate metal–organic framework hybrids were synthesized and applied to a screen-printed carbon electrode. | [35] | ||
Optical | Colorimetry | 1.7 × 10−6 M | 1.7 × 10−6–8 × 10−4 M | - | A droplet microfluidic sensor was developed for on-site, in situ continuous monitoring. | [36] | |
2.5 × 10−8 M | 2.5 × 10−8–3.5 × 10−4 M | - | The PDMS structure inside the chip has a higher surface-to-volume ratio compared to conventional channels, facilitating enhanced reduction and fluid mixing. | [37] | |||
Ammonium | Electrochemical | Voltammetry | 4.2 × 10−7 M | 10−6–10−4 M | 45 * days | Ni(OH)2 nanosheet arrays were loaded onto carbon cloth through a solvothermal reaction, and Pt was electrodeposited onto the surface. | [38] |
3.7 × 10−8 M | 10−7–10−4 M | 60 * days | The developed sensor utilizes a foam-supported electrode with silver/polypyrrole and platinum nanoparticles. | [39] | |||
8.69 × 10−6 M | 10−5–10−3 M | 7 days | A multi-walled carbon nanotube-modified ultra-micro-carbon thread electrode has been developed to operate under wide pH range conditions (pH 3–12). | [40] | |||
Potentiometry | 4 × 10−5 M | 10−4–4 × 10−2 M | - | A lab-on-a-chip based real-time ammonia sensor was developed. | [41] | ||
3 × 10−7 M | 10−6–10−3 M | 4 days | Using three types of ISEs and a chromatographic column, the selectivity limits of nonactin-based ISMs were overcome. | [42] | |||
4.2 × 10–5 M | ~10–4–10–1 M | ISM-free ammonium ISEs were developed using the Prussian blue analog of copper (II)-hexacyanoferrate. | [43] | ||||
Amperometry | 1.44 × 10−6 M | 0–5.1 × 10−3 M | 60 * days | The gold nanoparticle was applied to a polyaniline-based aqueous ammonia sensor. | [44] | ||
Transistor | 3.1 × 10−6 M | 10−5–10−2 M | 6 months | Fluoropolysiloxane-based ISFET has been developed to measure NH4+ in soil and underwater environments. | [45] | ||
Optical | Colorimetry | 0.15 mg L−1 | 0.5–5 mg L−1 | - | A colorimetric lab-on-a-chip device equipped with a heating platform has been developed for fast detection of ammonium. | [46] | |
Phosphate | Electrochemical | Voltammetry | 2 × 10−8 M | 2.5 × 10−8–10−3 M | 30 * days | Molybdenum blue was electrodeposited onto a graphite electrode. | [47] |
1.5 × 10−7 M | 3 × 10−7–2 × 10−6 M | - | A glassy carbon electrode was modified with molybdate tetrahydrate. | [48] | |||
2.2 × 10−6 M | 3.6 × 10−6–1.1 × 10−4 M | - | The glassy carbon electrode was modified with silanized multi-walled carbon nanotubes and gold nanoparticles. | [49] | |||
Potentiometry | 10−6 M | 10−6–10−1 M | 21 days | The screen-printed carbon electrode was modified with nickel oxide. | [50] | ||
10−5 M | 10−5–10−1 M | 28 days | Phosphorus-containing compounds are formed on the polytetrafluoroethylene-coated nickel wire. | [51] | |||
10−6 M (pH 7–8) | 10−6–10−1 M | 28 days | An all-solid-state ion sensor was developed by modifying the surface of pure tungsten. | [52] | |||
Amperometry | 10−5 M | 10−4–10−3 M 10−3–3 × 10−2 M | 30 * days | Homogeneous 3D Co3O4 nanoneedle arrays were grown on the electrode surface. | [53] | ||
Impedance measurement | 0.01 ppm | 0.01–40 ppm | 90 days | Machine learning-assisted multi-walled carbon nanotubes and PDMS-based sensors were developed. | [54] | ||
Transistor | 2 × 10−7 M | 5 × 10−6–6 × 10−3 M | 28 * days | A field-effect transistor has been developed by printing silver and silver/reduced graphene oxide composite. | [55] | ||
Optical | Colorimetry | 4 × 10−7 M | 4 × 10−7–10−4 M | - | Gradient Fabry–Pérot array applied to a colorimetric sensor. | [56] | |
1.6 × 10−8 M | 6.2 × 10−8–1.5 × 10−5 M | - | A lab-on-chip-based colorimetric sensing platform has been developed, incorporating an inertial-flow mixer. | [57] | |||
Potassium | Electrochemical | Voltammetry | - | 10−3–10−2 M | - | The characteristics of a commercially available tungsten oxide-modified glassy carbon electrode were investigated. | [58] |
- | 10−5–10−1 M | - | An all-solid-state electrode composed of poly(3-octylthiophene-2,5-diyl) and multi-walled carbon nanotubes was developed. | [13] | |||
Potentiometry | 4 × 10−7 M | 10−6–10−2 M | - | An all-solid-state ion-selective electrode was developed using nanoporous gold film and wire. | [59] | ||
10−4 M | 10−5–10−1 M | 60 * days | The thermoplastic electrode was modified to have a multilayered carbon black coating. | [60] | |||
10−7 M | 10−6–10−1 M | - | An electrode with hydrophilic and high electroactivity characteristics was fabricated by electrochemically depositing tungsten trioxide. | [61] | |||
- | 10−7–10−2 M | 6 days | An ion-selective electrode was fabricated using the one-step direct laser writing technique. | [62] | |||
Transistor | 10−9 M | 10−9–10−2 M | 5 months | A potassium ionophore III membrane was applied to an ion-sensitive field-effect transistor containing perylene-encapsulated graphene. | [63] | ||
10−9 M | 5 × 10−9–10−6 M | - | Fiber-based organic electrochemical transistors containing poly(3,4-ethylenedioxythiophene) and multi-walled carbon nanotubes were developed. | [33] | |||
Optical | Optical fiber | 0.14 ppm | 1–100 ppm | 14 days | An evanescent wave optical fiber sensor was developed by coating a portion of the optical fiber cladding with gold nanoparticles functionalized with 4′-aminodibenzo-18-crown-6 ether. | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Lee, J.; Park, S.; Kim, J.; Jang, K.-J. Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications. AgriEngineering 2024, 6, 4786-4811. https://doi.org/10.3390/agriengineering6040274
Hong Y, Lee J, Park S, Kim J, Jang K-J. Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications. AgriEngineering. 2024; 6(4):4786-4811. https://doi.org/10.3390/agriengineering6040274
Chicago/Turabian StyleHong, Yeonggeeol, Jooyoung Lee, Sangbae Park, Jangho Kim, and Kyoung-Je Jang. 2024. "Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications" AgriEngineering 6, no. 4: 4786-4811. https://doi.org/10.3390/agriengineering6040274
APA StyleHong, Y., Lee, J., Park, S., Kim, J., & Jang, K.-J. (2024). Next-Generation Nitrate, Ammonium, Phosphate, and Potassium Ion Monitoring System in Closed Hydroponics: Review on State-of-the-Art Sensors and Their Applications. AgriEngineering, 6(4), 4786-4811. https://doi.org/10.3390/agriengineering6040274