Application of a Latent Diffusion Model to Plant Disease Detection by Generating Unseen Class Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Image Generation Model
2.1.2. Dataset
2.2. Methods
2.2.1. Generation of Diseased Leaf Images
2.2.2. Training a Classification Model for Unseen Classes
3. Results and Discussion
3.1. Generation of Diseased Leaf Images
3.2. Training a Classification Model for an Unseen Class
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Attri, I.; Awasthi, L.K.; Sharma, T.P.; Rathee, P. A review of deep learning techniques used in agriculture. Ecol. Inform. 2023, 77, 102217. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. Cropdeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, T. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting apples and oranges with deep learning: A data-driven approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [Google Scholar] [CrossRef]
- You, J.; Li, X.; Low, M.; Lobell, D.; Ermon, S. Deep Gaussian process for crop yield prediction based on remote sensing data. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4559–4565. [Google Scholar]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning—Method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 2019, 162, 219–234. [Google Scholar] [CrossRef]
- Itakura, K.; Narita, Y.; Noaki, S.; Hosoi, F. Automatic pear and apple detection by videos using deep learning and a Kalman filter. OSA Contin. 2021, 4, 1688–1695. [Google Scholar] [CrossRef]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 215232. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Trivedi, V.; Sheth, V.; Shah, A.; Chauhan, U. ResTS: Residual deep interpretable architecture for plant disease detection. Inf. Process. Agric. 2022, 9, 212–223. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 2020, 173, 105393. [Google Scholar] [CrossRef]
- Abbas, A.; Jain, S.; Gour, M.; Vankudothu, S. Tomato plant disease detection using transfer learning with C-GAN synthetic images. Comput. Electron. Agric. 2021, 187, 106279. [Google Scholar] [CrossRef]
- Barman, U.; Choudhury, R.D. Smartphone assist deep neural network to detect the Citrus diseases in Agri-informatics. Glob. Transit. Proc. 2022, 3, 392–398. [Google Scholar] [CrossRef]
- Bansal, P.; Yadav, M. Automatic detection of plant leaf diseases using deep learning. Int. J. Comput. Digit. Syst. 2023, 13, 901–910. [Google Scholar] [CrossRef]
- Sengupta, P.; Mehta, A.; Rana, P.S. Enhancing performance of deep learning models with a novel data augmentation approach. In Proceedings of the IEEE 14th International Conference on Computing Communication and Networking Technologies, Delhi, India, 6–8 July 2023. [Google Scholar]
- Singh, R.S.R.; Sanodiya, R.K. Zero-shot transfer learning framework for plant leaf disease classification. IEEE Access 2023, 11, 143861–143880. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Arun Pandan, J.; Geetharamani, G.; Annete, B. Data augmentation on plant leaf disease image dataset using image manipulation and deep learning techniques. In Proceedings of the IEEE 9th International Conference on Advanced Computing, Tiruchirappalli, India, 13–14 December 2019; pp. 199–204. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10684–10695. [Google Scholar]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, S.; Wang, L.; Chen, W. Lora: Low-rank adaptation of large language models. arXiv 2021, arXiv:2106.09685. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 8748–8763. [Google Scholar]
- Stable Diffusion with Diffusers. Hugging Face Blog. Available online: https://huggingface.co/blog/stable_diffusion (accessed on 29 March 2024).
- Schuhmann, C.; Beaumont, R.; Vencu, R.; Gordon, C.; Wightman, R.; Cherti, M.; Coombes, T.; Katta, A.; Mullis, C.; Wortsman, M.; et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 2022, 35, 25278–25294. [Google Scholar]
- spMohanty PlantVillage-Dataset. Available online: https://github.com/spMohanty/PlantVillage-Dataset (accessed on 29 March 2024).
Generate Condition | Weight | ||
---|---|---|---|
Case 1 | Case 2 | Case 3 | |
Apple | 1 | 1 | 1 |
Grape | −1 | 1 | −0.4 |
Black-rotted | 1 | 1 | 1 |
Healthy | −1 | 1 | −0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, N.; Naito, H.; Hosoi, F. Application of a Latent Diffusion Model to Plant Disease Detection by Generating Unseen Class Images. AgriEngineering 2024, 6, 4901-4910. https://doi.org/10.3390/agriengineering6040279
Mori N, Naito H, Hosoi F. Application of a Latent Diffusion Model to Plant Disease Detection by Generating Unseen Class Images. AgriEngineering. 2024; 6(4):4901-4910. https://doi.org/10.3390/agriengineering6040279
Chicago/Turabian StyleMori, Noriyuki, Hiroki Naito, and Fumiki Hosoi. 2024. "Application of a Latent Diffusion Model to Plant Disease Detection by Generating Unseen Class Images" AgriEngineering 6, no. 4: 4901-4910. https://doi.org/10.3390/agriengineering6040279
APA StyleMori, N., Naito, H., & Hosoi, F. (2024). Application of a Latent Diffusion Model to Plant Disease Detection by Generating Unseen Class Images. AgriEngineering, 6(4), 4901-4910. https://doi.org/10.3390/agriengineering6040279