Soil Moisture Spatial Variability and Water Conditions of Coffee Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Characterization
2.2. Georeferencing and Sampling
- August 2020 (dry season).
- January 2021 (rainy season).
2.3. Obtaining Soil Moisture
2.4. Statistical Analysis
2.4.1. Descriptive Statistics
2.4.2. Geostatistical Assessment
2.5. Image Acquisition and Processing
- Focal Length: 3.98 mm.
- Vertical Coverage: 70%.
- Horizontal Cover: 70%.
- Flight Altitude: 50 m.
- Speed: 12 m/s.
2.6. Vegetation Indices
2.7. Correlation Analysis
3. Results
3.1. Statistical Evaluation
3.1.1. Statistical Summary
3.1.2. Geostatistical Analysis
3.2. Statistical Correlation Between Vegetation Indices and Soil Moisture
4. Discussion
4.1. Descriptive Statistics
4.2. Climatic Conditions, Water Balance, Altitude, and Soil Properties
4.3. Geostatistical Analysis
4.4. Analysis of Correlation Between Field Data and Vegetation Indices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esposito, F.; Fasano, E.; De Vivo, A.; Velotto, S.; Sarghini, F.; Cirillo, T. Processing effects on acrylamide content in roasted coffee production. Food Chem. 2020, 319, 126550. [Google Scholar] [PubMed]
- CONAB-Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Café, Brasília, DF, v.11, n. 4, Quarto Levantamento, Janeiro 2025. Available online: https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe (accessed on 3 March 2025).
- Aparecido, L.E.O.; Rolim, G.S.; Souza, P.S. Sensitivity of newly transplanted coffee plants to climatic conditions at altitudes of Minas Gerais, Brazil. Aust. J. Crop Sci. 2015, 9, 160–167. [Google Scholar]
- de Sá Júnior, A.; de Carvalho, L.G.; Da Silva, F.F.; de Carvalho Alves, M. Application of the Köppen classification for climatic zoning in the state of Minas Gerais, Brazil. Theor. Appl. Climatol. 2012, 108, 1–7. [Google Scholar]
- Camargo, M.B.P. The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia 2010, 69, 239–247. [Google Scholar]
- International Coffee Organization (ICO). Coffee Report and Outlook April 2023. 2023. Available online: https://icocoffee.org/documents/cy2022-23/Coffee_Report_and_Outlook_April_2023_-_ICO.pdf (accessed on 14 October 2024).
- Lopes, C.C.; Valente, G.F.; de Cinque Mariano, D.; Okumura, R.S.; de Jesus Matos Viégas, I.; Ferraz, G.A.e.S.; Ferraz, P.F.P.; Dos Santos, S.A. Spatial Variability of Soil Resistance to Penetration in Fruit Cultivation in Eastern Amazonia. AgriEngineering 2023, 5, 1302–1313. [Google Scholar] [CrossRef]
- Vicente, M.R.; Mantovani, E.C.; Fernandes, A.L.T.; Neves, J. Efeitos da irrigação na produção e no desenvolvimento do cafeeiro na região oeste da Bahia. Coffee Sci. 2017, 12, 544–551. [Google Scholar] [CrossRef]
- Rezende, F.C.; Oliveira, S.D.R.; Faria, M.A.D.; Arantes, K.R. Características produtivas do cafeeiro (Coffea arabica L. cv.,Topázio MG-1190), recepado e irrigado po gotejamento. Coffee Sci. 2006, 1, 103–110. [Google Scholar]
- Mantovani, E.C.; Bernardo, S.; Palaretti, L.F. Irrigação: Princípios e Métodos; Editora UFV: Viçosa, MG, Brazil, 2009; 355p. [Google Scholar]
- Ávila, L.F.; Mello, C.R.d; Silva, A.M.d. Continuity and spatial distribution of soil moisture in the Serra da Mantiqueira watershed. Rev. Bras. Eng. Agríc. Ambient. 2010, 14, 1257–1266. (In Portuguese) [Google Scholar]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial–temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar]
- Zhang, M.; Li, M.; Wang, W.; Liu, C.; Gao, H. Temporal and spatial variability of soil moisture based on WSN. Math. Comput. Model. 2013, 58, 826–833. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.G.; Iversen, W.M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar]
- Santos, S.A.; Ferraz, G.A.S.; Figueiredo, V.C.; Volpato, M.M.L.; Matos, C.S.M.; Pereira, A.B.; Conti, L.; Bambi, G.; Marin, D.B. Spatial and temporal variability of productivity of coffee plants grown in an experimental field located in Três Pontas, Brazil. Agron. Res. 2023, 21, 1567–1580. [Google Scholar] [CrossRef]
- de Assis Silva, S.; de Souza Lima, J.S.; de Souza, G.S. Estudo da fertilidade de um Latossolo Vermelho-Amarelo húmico sob cultivo de café arábica por meio de geoestatística. Rev. Ceres 2010, 57, 560–567. [Google Scholar]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H. Monitoring agronomic parameters of winter wheat crops with low-cost UAV imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Padolfi, A.S.; Ramaldes, G.P.; dos Santos, O.L. Vegetation Index Analysis Using Images Obtained By Vant. Rev. Cient. Faesa 2018, 14, 142–162. (In Portuguese) [Google Scholar]
- Pezzopane, J.R.M.; Bernardi, A.C.C.; Bosi, C.; Crippa, P.H.; Santos, P.M.; Nardachione, E.C. Assessment of Piatã palisadegrass forage mass in integrated livestock production systems using a proximal canopy reflectance sensor. Eur. J. Agron. 2019, 103, 130–139. [Google Scholar]
- Shiratsuchi, L.S.; Brandao, Z.N.; Vicente, L.E.; Victoria, D.C.; Ducati, J.R.; Oliveira, R.P.; Vilela, M.F. Remote Sensing: Basic concepts and applications in Precision Agriculture. In Precision Agriculture: Results from a New Perspective; Bernardi, A.C.C., Naime, J.M., Resende, A.V., Bassoi, L.H., Inamasu, R.Y., Eds.; Embrapa: Brasília, Brazil, 2014; pp. 58–73. [Google Scholar]
- Queiroz, D.M.; Valente, D.S.M.; Pinto, F.A.C.; Borém, A. Agricultura Digital, 2nd ed.; Oficina de Textos: São Paulo, Brazil, 2022. [Google Scholar]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. Proc. Earth Resour. Technol. Satell. Symp. 1973, 1, 309–317. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Furfaro, R.; Ganapol, B.D.; Johnson, L.F.; Herwitz, S.R. Neural network algorithm for coffee ripeness evaluation using airborne images. Appl. Eng. Agric. 2007, 23, 379–387. [Google Scholar] [CrossRef]
- Manzano, J.M.; Narvaez, J.G.; Castillo, J.G.; Vásquez, D.R.; Villada, L.G. Analysis of Normalized Vegetation Index in Castile Coffee Crops, Using Mosaics of Multispectral Images Acquired by Unmanned Aerial Vehicle (UAV). In Proceeding of the International Conference on Applied Technologies, Quito, Ecuador, 3–5 December 2019. [Google Scholar]
- Bonnaire Rivera, L.; Montoya Bonilla, B.; Obando-Vidal, F. Processing multispectral imaging captured by drones to evaluate the normalized difference vegetation index of Castillo coffee plantations. Cienc. Tecnol. Agropecu. 2021, 22. [Google Scholar] [CrossRef]
- Silva, S.A.S.; Ferraz, G.A.S.; Figueiredo, V.C.; Volpato, M.M.L.; Machado, M.L.; Silva, V.A.; Matos, C.S.M.; Conti, L.; Bambi, G. Spatial variability of chlorophyll and NDVI obtained by different sensors in an experimental coffee field. Agron. Res. 2024, 22, 554–570. [Google Scholar] [CrossRef]
- Faria, R.d.O. Malha amostral para cafeicultura de precisão. Doutorado em Engenharia Agrícola; Universidade Federal de Lavras: Lavras, Brazil, 2019; 118p. [Google Scholar]
- ABNT NBR 6457:2016; Solos–Determinação de Umidade em Amostras de solo–Método de Secagem em Estufa. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2016.
- Klein, V.A. Soil Physics, 1st ed.; Passo Fundo University: Passo Fundo, Brazil, 2008; 212p. (In Portuguese) [Google Scholar]
- Warrick, A.W.; Nielsen, D.R. Spatial variability of soil physical properties in the field. In Applications of Soil Physics; Hillel, D., Ed.; Academic Press: New York, NY, USA, 1980; pp. 319–344. [Google Scholar]
- R. Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 14 April 2024).
- Vieira, S.R. Geostatistics in studies of spatial soil variability. In Topics in Soil Science, 1st ed; Novais, R.F., Alvarez, V.H., Schaefer, G.R., Eds.; Brazilian Society of Soil Science: Viçosa, Brazil, 2000; Volume 1, pp. 1–54. [Google Scholar]
- Bachmaier, M.; Backers, M. Variogram or semivariogram? Understanding the variances in a variogram. Precis. Agric. 2008, 9, 173–175. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: Oxford, UK, 1989; p. 413. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Ribeiro Junior, P.J.; Diggle, P.J. GeoR a package for geostatistical analysis. R-News 2001, 1, 14–18. [Google Scholar]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident detection of crop water stress.; nitrogen status and canopy density using ground based multispectral data. Proc. Fifth Int. Conf. Precis. Agric. 2000, 1619, 6. [Google Scholar]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Chen, J. Evaluation of Vegetation Indices and Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H. Modified soil adjusted vegetation index (MSAVI). Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Santos, C.M.L.S.A. Descriptive Statistics: Self-Learning Manual, 3rd ed.; Edições Sílabo: Lisboa, Portugal, 2018; pp. 11–20. (In Portuguese) [Google Scholar]
- Carvalho, L.C.L.; Silva, F.M.; Silva Ferraz, G.A.; Silva, F.C.; Stracieri, J. Spatial variability of soil physical attributes and agronomic characteristics of coffee cultivation. Coffee Sci. 2013, 8, 265–275. [Google Scholar]
- Araújo e Silva Ferraz, G.; Silva, F.D.; Costa, P.D.; Silva, A.C.; Carvalho, F.D.M. Precision agriculture to study soil chemical properties and the yield of a coffee field. Coffee Sci. 2012, 7, 59–67. [Google Scholar]
- Fiorese, C.H.U. Analysis of physical properties of soil with coffee monoculture in the municipality of Castelo (ES). Braz. J. Dev. 2019, 5, 6850–6859. [Google Scholar] [CrossRef]
- Taques, R.C.; da Penha Padovan, M.; Maia, I.F.; Bressan, A.; Marques, N.B.; Milheiros, I.S. Characterization of Soil Moisture in Coffee Shaded With Gliricidia, Banana and Inga Compared to Coffee in Full Sun. In Proceeding of the X Brazilian Coffee Research Symposium, Vitória, ES, Brazil, 8–11 October 2019. (In Portuguese). [Google Scholar]
- Mota, P.C., Jr.; Campos, M.C.C.; Mantovanelli, B.C.; Franciscon, U.; Cunha, J.M. Spatial variability of physical attributes of the soil in Amazonian black soil under coffee cultivation. Coffee Sci. 2017, 12, 260–271. [Google Scholar]
- Tavares, T.O.; Costa, W.C.A.; Leite, P.J.S. Influence of Climatic Conditions in the 2013/14 Harvest and the Development of Coffee Plants in the Region of Araxá, MG; Instituto de Ciências da Saúde, Agrárias e Humanas (ISAH): Araxá, Brazil, 2014. (In Portuguese) [Google Scholar]
- Matiello, J.B.; Garcia, A.W.R.; Almeida, S.R. How to Establish Productive Coffee Plantations; Reproarte Gráfica: Varginha, MG, Brazil, 2009; 150p. (In Portuguese) [Google Scholar]
- Burak, D.L.; Santos, D.A.; Passos, R.R. Spatial variability of physical attributes: Relationship with relief, organic matter and productivity in conilon coffee. Coffee Sci. 2016, 11, 455–466. [Google Scholar]
- Serafim, M.E.; Oliveira, G.C.D.; Lima, J.M.D.; Silva, B.M.; Zeviani, W.M.; Lima, V.M. Water availability and distinction of environments for growing coffee trees. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 362–370. (In Portuguese) [Google Scholar] [CrossRef]
- Santos, S.A.D.; Ferraz, G.A.E.S.; Figueiredo, V.C.; Volpato, M.M.L.; Machado, M.L.; Silva, V.A. Evaluation of the water conditions in coffee plantations using RPA. AgriEngineering 2022, 5, 65–84. [Google Scholar] [CrossRef]
Season | Monthly Mean Temperature (°C) | Monthly Mean Relative Moisture (%) | Monthly Accumulated Precipitation (mm) | Mean Wind Speed (m/s) | Water Balance | |||
---|---|---|---|---|---|---|---|---|
PET | SWS | EXC | WD | |||||
Dry (Aug/2020) | 18.3 * | 59.3 * | 17.6 * | 2.0 * | 53.8 * | 0.0 * | 0.0 * | 94.1 * |
Rainy (Jan/2021) | 23.0 * | 70.9 * | 270.6 * | 1.7 * | 110.0 * | 39.9 * | 212.9 * | 0.0 * |
Parameter | Value |
---|---|
Altitude range (m) | 917–935 |
Elevation variation (m) | 18 |
Soil texture | clayey |
Clay (%) | 36–38 |
Silt (%) | 32–33 |
Sand (%) | 29–32 |
Organic matter (%) | 2.08–3.38 |
Ph (KCl) | 6.23–8.11 |
Cation exchange capacity (cmol/dm3) | 6.0 |
Base saturation (%) | 69.56–74.16 |
Index | Acronym | Equation | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [23] | |
Normalized Difference Water Index | NDWI | [25] | |
Enhanced Vegetation Index 2 | EVI2 | [40] | |
Normalized Difference Red Edge | NDRE | [41] | |
Chlorophyll Vegetation Index | CVI | [42] | |
Green Normalized Difference Red Edge | GNDVI | [43] | |
Canopy Chlorophyll Content Index | CCCI | [41] | |
Green Ratio of Vegetation Index | GRVI | [44] | |
Modified Simple Ratio | MSR | [45] | |
Infrared Percentage Vegetation Index | IPVI | [46] | |
Soil-Adjusted Vegetation Index | SAVI | [47] | |
Modified Soil-Adjusted Vegetation Index 2 | MSAVI | [48] | |
Optimized Soil-Adjusted Vegetation Index | OSAVI | [49] | |
Green Chlorophyll Index | CIgreen | [24] | |
Red Edge Chlorophyll Index | CIrededge | [24] |
Season | Variables (%) | Min | Max | Md | Mean | Var | SD | CV (%) |
---|---|---|---|---|---|---|---|---|
Dry | Gm (0–10 cm) | 12.50 | 20.64 | 17.67 | 17.22 | 3.65 | 1.91 | 0.11 |
Dry | Gm (10–20 cm) | 11.75 | 19.33 | 17.93 | 17.61 | 2.63 | 1.62 | 0.09 |
Rainy | Gm (0–10 cm) | 19.52 | 29.54 | 25.52 | 24.83 | 6.00 | 2.45 | 0.09 |
Rainy | Gm (10–20 cm) | 18.48 | 27.97 | 25.69 | 25.26 | 4.94 | 2.22 | 0.08 |
Dry | Vm (0–10 cm) | 18.92 | 31.19 | 23.06 | 23.57 | 7.34 | 2.68 | 0.11 |
Dry | Vm (10–20 cm) | 15.36 | 36.19 | 23.23 | 22.74 | 13.93 | 3.73 | 0.16 |
Rainy | Vm (0–10 cm) | 26.24 | 45.45 | 34.39 | 35.02 | 8.08 | 2.84 | 0.07 |
Rainy | Vm (10–20 cm) | 22.79 | 48.85 | 34.68 | 33.87 | 25.37 | 5.03 | 0.14 |
Season | Variable | Mod. | C0 | C1 | C0 + C1 | A (m) | DSD | ME | |
---|---|---|---|---|---|---|---|---|---|
Dry | Gm (0–10 cm) | Sph | 0.01 | 3.50 | 3.51 | 70.00 | 0.28 | strong | −0.00 |
Gm (10–20 cm) | Sph | 0.10 | 2.50 | 2.60 | 40.00 | 3.84 | strong | 0.01 | |
Vm (0–10 cm) | Exp | 0.25 | 3.80 | 4.05 | 35.00 | 6.17 | strong | −0.02 | |
Vm (10–20 cm) | Exp | 0.01 | 4.00 | 4.01 | 50.00 | 0.24 | strong | 0.00 | |
Rainy | Gm (0–10 cm) | Sph | 0.00 | 8.00 | 8.00 | 45.00 | 0.00 | strong | 0.00 |
Gm (10–20 cm) | Exp | 0.00 | 15.00 | 15.10 | 40.00 | 0.66 | strong | 0.00 | |
Vm (0–10 cm) | Sph | 0.01 | 22.00 | 22.01 | 20.00 | 0.04 | strong | −0.02 | |
Vm (0–10 cm) | Sph | 0.01 | 28 | 28.01 | 20.00 | 0.00 | strong | 0.07 |
Index | Gm (0–10 cm) | Gm (10–20 cm) | Vm (0–10 cm) | Vm (10–20 cm) | ||||
---|---|---|---|---|---|---|---|---|
Dry | Rainy | Dry | Rainy | Dry | Rainy | Dry | Rainy | |
RED | 0.3005 ns | 0.2767 ns | 0.1235 ns | 0.2781 ns | 0.4637 * | 0.4163 * | 0.2668 ns | 0.4368 * |
NIR | 0.1991 ns | 0.0185 ns | 0.0938 ns | 0.0110 ns | 0.2213 ns | 0.1155 ns | 0.2210 ns | 0.1020 ns |
RED EDGE | 0.1782 ns | 0.0878 ns | 0.0355 ns | 0.1732 ns | 0.2608 ns | 0.0506 ns | 0.2289 ns | 0.0197 ns |
GREEN | 0.2840 ns | 0.0618 ns | 0.1093 ns | 0.3141 ns | 0.5157 * | 0.1692 ns | 0.3601 ns | 0.2597 ns |
NDVI | 0.1328 ns | 0.1791 ns | 0.0463 ns | 0.1604 ns | 0.2421 ns | 0.3275 ns | 0.0871 ns | 0.3329 ns |
NDWI | 0.0129 ns | 0.0841 ns | 0.0299 ns | 0.2558 ns | 0.1079 ns | 0.2815 ns | 0.0011 ns | 0.3418 ns |
EVI2 | 0.0627 ns | 0.0584 ns | 0.0375 ns | 0.0330 ns | 0.0177 ns | 0.1738 ns | 0.0950 ns | 0.1652 ns |
NDRE | 0.1202 ns | 0.0853 ns | 0.1854 ns | 0.2312 ns | 0.0156 ns | 0.1809 ns | 0.0786 ns | 0.2458 ns |
CVI | 0.4363 * | 0.0277 ns | 0.2487 ns | 0.2798 ns | 0.3791 * | 0.1283 ns | 0.2602 ns | 0.2195 ns |
GNDVI | 0.0129 ns | 0.0841 ns | 0.0299 ns | 0.2558 ns | 0.1079 ns | 0.2815 ns | 0.0011 ns | 0.3418 ns |
CCCI | 0.0431 ns | 0.0277 ns | 0.1035 ns | 0.0325 ns | 0.0881 ns | 0.1454 ns | 0.0302 ns | 0.2664 ns |
GVI | 0.0409 ns | 0.1141 ns | 0.0287 ns | 0.2642 ns | 0.0833 ns | 0.3033 ns | 0.0129 ns | 0.3587 ns |
MSR | 0.1328 ns | 0.1791 ns | 0.0463 ns | 0.1604 ns | 0.2421 ns | 0.3275 ns | 0.0871 ns | 0.3329 ns |
IPVI | 0.1328 ns | 0.1791 ns | 0.0463 ns | 0.1604 ns | 0.2421 ns | 0.3275 ns | 0.0871 ns | 0.3329 ns |
SAVI | 0.0827 ns | 0.0655 ns | 0.0480 ns | 0.0411 ns | 0.0457 ns | 0.1848 ns | 0.1171 ns | 0.1774 ns |
MSAVI | 0.0158 ns | 0.0542 ns | 0.0200 ns | 0.0301 ns | 0.0490 ns | 0.1696 ns | 0.0536 ns | 0.1613 ns |
OSAVI | 0.0076 ns | 0.1002 ns | 0.0098 ns | 0.0778 ns | 0.0799 ns | 0.2321 ns | 0.0331 ns | 0.2287 ns |
CIgreen | 0.0409 ns | 0.1141 ns | 0.0287 ns | 0.2642 ns | 0.0833 ns | 0.3033 ns | 0.0129 ns | 0.3587 ns |
CIrededge | 0.1360 ns | 0.0876 ns | 0.1941 ns | 0.2377 ns | 0.0005 ns | 0.1751 ns | 0.0908 ns | 0.2424 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Airane dos Santos Silva, S.; Ferraz, G.A.e.S.; Figueiredo, V.C.; Valente, G.F.; Volpato, M.M.L.; Machado, M.L. Soil Moisture Spatial Variability and Water Conditions of Coffee Plantation. AgriEngineering 2025, 7, 110. https://doi.org/10.3390/agriengineering7040110
Airane dos Santos Silva S, Ferraz GAeS, Figueiredo VC, Valente GF, Volpato MML, Machado ML. Soil Moisture Spatial Variability and Water Conditions of Coffee Plantation. AgriEngineering. 2025; 7(4):110. https://doi.org/10.3390/agriengineering7040110
Chicago/Turabian StyleAirane dos Santos Silva, Sthéfany, Gabriel Araújo e Silva Ferraz, Vanessa Castro Figueiredo, Gislayne Farias Valente, Margarete Marin Lordelo Volpato, and Marley Lamounier Machado. 2025. "Soil Moisture Spatial Variability and Water Conditions of Coffee Plantation" AgriEngineering 7, no. 4: 110. https://doi.org/10.3390/agriengineering7040110
APA StyleAirane dos Santos Silva, S., Ferraz, G. A. e. S., Figueiredo, V. C., Valente, G. F., Volpato, M. M. L., & Machado, M. L. (2025). Soil Moisture Spatial Variability and Water Conditions of Coffee Plantation. AgriEngineering, 7(4), 110. https://doi.org/10.3390/agriengineering7040110