Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review
Abstract
:1. Introduction
2. Task Allocation for Agricultural Multi-Robotic Arms
2.1. Division of Working Areas for Multi-Robotic Arms
2.1.1. Robotic Arm Classification
Applied Crops | Sensor Model | Producing Area | Structure | Equipment Features | Advantage | Disadvantage | Ref. |
---|---|---|---|---|---|---|---|
Cotton | - | Clemson University team | Cartesian robotic arm | Simple structure, high control accuracy, and good rigidity | Only linear operations can be performed, and the space utilization rate is low. | [46] | |
Apple | SN04-N | America | Cartesian robotic arm | [39] | |||
Apple | Intel RealSense D435 | Universal robots | Multi-cylindrical robotic arm | Compact structure, easier to solve spatial trajectories | Complex structure; arm end error increases with the increase in arm length | [41] | |
Eggplant | Prosilica GC2450C, Mesa SwissRanger SR4000 | Kinova Robotics | Dual joint robotic arm | Flexible movements, good obstacle avoidance performance, and the ability to perform complex and precise tasks | Low structural stiffness and more complex driving control | [47] |
2.1.2. Regional Division
2.2. Operation Sequence of Agricultural Multi-Robot Arms
2.3. Task Allocation Algorithm
2.3.1. Intelligent Heuristic Algorithm
2.3.2. Reinforcement Learning Algorithm
Target | Number | Division of Picking Areas | Task Allocation Method | Average Time | Efficiency Improvement | Planning Road Map | Ref. |
---|---|---|---|---|---|---|---|
Peach | 2 | Simulated annealing algorithm | - | 1.20 times | [51] | ||
Apple | 4 | Genetic algorithm | 7.12 s | 1.96 times | [25] | ||
Peach | 6 | Allocation of work units for waiting fruit load | 4 s | 1.5 times | [52] | ||
Fruit | 4 | AOMTSP-GA | 3.15 s | 4.28 times | [20] | ||
Fungus | IGAACMO | 1183 pcs/h | 2 times | [58] | |||
Apple | 4 | PPO | 5.8 s | 1.33 times | [36] | ||
Apple | 2 | LSTM-PPO | 6.26 s | 1.17 times | [32] | ||
Strawberry | 2 | Active obstacle separation strategy | 6.1 s | 1.23 times | [55] |
3. Path Planning of Agricultural Multi-Robot Arms Based on Intelligent Algorithm
3.1. Heuristic Algorithm
3.2. Path Planning Algorithm Based on Probability Sampling
3.2.1. Probability Roadmap
3.2.2. Rapidly Exploring Random Trees
4. Path Planning of Agricultural Multi-Robot Arms Based on Reinforcement Learning Algorithm
4.1. Strategy Based Reinforcement Learning Algorithm
4.2. Reinforcement Learning Based on Q Value
4.2.1. Q-Learning Algorithm
4.2.2. Deep Q-Learning
4.3. Actor–Critic Algorithm
4.3.1. Soft Actor–Critic
4.3.2. Twin Delayed Deep Deterministic Policy Gradient Algorithm
4.3.3. Deep Deterministic Policy Gradient
Crop | Algorithm | Feature | Success Rate | Planning Time | Planning Path | Ref. |
---|---|---|---|---|---|---|
Guava | Recurrent deep reinforcement learning | 90.90% | 29 ms | [116] | ||
Apple | Trajectory planning | - | 260 s | [117] | ||
Litchi | DPPG | 96.7% | 124 s | [115] | ||
Walnut | HER-TD3 | 80.0% | - | [114] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, W.; Huang, X.; Wang, S.; He, X. A comprehensive review of the research of the “Eye–Brain–Hand” harvesting system in smart agriculture. Agronomy 2023, 13, 2237. [Google Scholar] [CrossRef]
- Yerebakan, M.O.; Hu, B. Human–robot collaboration in modern agriculture: A review of the current research landscape. Adv. Intell. Syst. 2024, 6, 2300823. [Google Scholar] [CrossRef]
- Han, C.; Lv, J.; Dong, C.; Li, J.; Luo, Y.; Wu, W.; Abdeen, M.A. Classification, advanced technologies, and typical applications of end-effector for fruit and vegetable picking robots. Agriculture 2024, 14, 1310. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S. Agricultural Unmanned Systems: Empowering Agriculture with Automation. Agronomy 2024, 14, 1203. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, S.; Ma, S.; Niu, C.; Yan, C.; Lu, C. Optimized design and experiment of the precise obstacle avoidance control system for a grape interplant weeding machine. Trans. Chin. Soc. Agric. Eng. 2021, 37, 31–39. [Google Scholar]
- Zhan, J.; Jiang, Y. Industrialization Trends and Multi-arm Technology Direction of Harvesting Robots. Trans. Chin. Soc. Agric. Mach. 2024, 55, 1–17. [Google Scholar]
- Chen, J.; Ma, W.; Liao, H.; Lu, J.; Yang, Y.; Qian, J.; Xu, L. Balancing Accuracy and Efficiency: The Status and Challenges of Agricultural Multi-Arm Harvesting Robot Research. Agronomy 2024, 14, 2209. [Google Scholar] [CrossRef]
- Zhai, C.; Yang, S.; Wang, X.; Zhang, C.; Song, J. Status and prospect of intelligent measurement and control technology for agricultural equipment. Trans. Chin. Soc. Agric. Mach. 2022, 53, 1–20. [Google Scholar]
- AGROB0T Meet the E-Series-the First Pre-Commercial Robotic Harvesters for Gently Harvest Strawberries [EB/0L]. Available online: https://www.agrobot.com/e-series (accessed on 20 July 2024).
- FF Roboties [EB/OL]. Available online: https://www.ffrobotics.com (accessed on 20 July 2024).
- Kumar, S.; Mohan, S.; Skitova, V. Designing and implementing a versatile agricultural robot: A vehicle manipulator system for efficient multitasking in farming operations. Machines 2023, 11, 776. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, H.; Chen, X.; Zhao, Y. Review of technology, application status and development trend in multi-arm cooperative robots. J. Mech. Eng. 2023, 59, 1–16. [Google Scholar]
- He, Z.; Ma, L.; Wang, Y.; Wei, Y.; Ding, X.; Li, K.; Cui, Y. Double-arm cooperation and implementing for harvesting kiwifruit. Agriculture 2022, 12, 1763. [Google Scholar] [CrossRef]
- Luo, J.W.; Xu, J.; Hou, Y.; Xu, H.; Wu, W.; Zhang, H.T. Task-Oriented Collision Avoidance in Fixed-Base Multi-manipulator Systems. In Proceedings of the Intelligent Robotics and Applications: 13th International Conference, ICIRA 2020, Kuala Lumpur, Malaysia, 5–7 November 2020; Proceedings 13. Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 76–87. [Google Scholar]
- Levy, A.; Livingston, T.; Wang, C.; Achor, D.; Vashisth, T. Canopy density, but not bacterial titers, predicts fruit yield in huanglongbing-affected sweet orange trees. Plants 2023, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Miao, Z.; Ji, J.C.; Pan, Q. An effective collaboration evolutionary algorithm for multi-robot task allocation and scheduling in a smart farm. Knowl.-Based Syst. 2024, 289, 111474. [Google Scholar] [CrossRef]
- Ladon, T.; Chandel, J.S.; Sharma, N.C.; Verma, P. Optimizing apple orchard management: Investigating the impact of planting density, training systems and fertigation levels on tree growth, yield and fruit quality. Sci. Hortic. 2024, 334, 113329. [Google Scholar] [CrossRef]
- Kurtser, P.; Edan, Y. Planning the sequence of tasks for harvesting robots. Robot. Auton. Syst. 2020, 131, 103591. [Google Scholar] [CrossRef]
- Wu, R.; Yin, Y.; Xu, K. Multi-task Collaborative Modeling and Assignment Method of Manipulator. Mech. Sci. Technol. Aerosp. Eng. 2020, 39, 433–437. [Google Scholar]
- Li, T.; Qiu, Q.; Zhao, C.J.; Xie, F. Task planning of multi-arm harvesting robots for high-density dwarf orchards. Trans. CSAE 2021, 37, 1–10. [Google Scholar]
- Cui, Y.; Xu, Z.; Zhong, L.; Xu, P.; Shen, Y.; Tang, Q. A task-adaptive deep reinforcement learning framework for dual-arm robot manipulation. IEEE Trans. Autom. Sci. Eng. 2024, 22, 466–479. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Xuhai, Y.; Wenhao, Z.; Yufeng, L.; Xiaochen, Q.; Qian, Z. Review of path planning algorithms for picking manipulator. J. Chin. Agric. Mech. 2023, 44, 161. [Google Scholar]
- Gao, R.; Zhou, Q.; Cao, S.; Jiang, Q. Apple-picking robot picking path planning algorithm based on improved PSO. Electronics 2023, 12, 1832. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, C.; Li, T.; Chen, L.; Guo, X.; Xie, F.; Xiong, Z.; Chen, K.; Liu, C.; Yan, T. Design and test of a four-arm apple harvesting robot. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2023, 39, 25–33. [Google Scholar]
- Orisatoki, M.; Amouzadi, M.; Dizqah, A. A heuristic informative-path-planning algorithm to map unknown areas and a benchmark solution. In Proceedings of the2024 IEEE Conference on Control Technology and Applications (CCTA), Northumbria University, Newcastle upon Tyne, UK, 21–23 August 2024; IEEE: New York, NY, USA, 2024; pp. 254–261. [Google Scholar]
- Dijkstra, E. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Association for Computing Machinery: New York, NY, USA, 2022; pp. 287–290. [Google Scholar]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic algorithm-A literature review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; IEEE: New York, NY, USA, 2019; pp. 380–384. [Google Scholar]
- Wu, S.; Li, Q.; Wei, W. Application of ant colony optimization algorithm based on triangle inequality principle and partition method strategy in robot path planning. Axioms 2023, 12, 525. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, S.; Cui, Y.; Jiang, H. Path planning for robotic manipulator in complex multi-obstacle environment based on improved_RRT. IEEE/ASME Trans. Mechatron. 2022, 27, 4774–4785. [Google Scholar] [CrossRef]
- Xu, T. Recent advances in Rapidly-exploring random tree: A review. Heliyon 2024, 10, e32451. [Google Scholar] [CrossRef]
- Guo, Z.; Fu, H.; Wu, J.; Han, W.; Huang, W.; Zheng, W.; Li, T. Dynamic Task Planning for Multi-Arm Apple-Harvesting Robots Using LSTM-PPO Reinforcement Learning Algorithm. Agriculture 2025, 15, 588. [Google Scholar] [CrossRef]
- Jin, T.; Han, X. Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Comput. Electron. Agric. 2024, 221, 108938. [Google Scholar] [CrossRef]
- Fountas, S.; Mylonas, N.; Malounas, I.; Rodias, E.; Hellmann Santos, C.; Pekkeriet, E. Agricultural robotics for field operations. Sensors 2020, 20, 2672. [Google Scholar] [CrossRef]
- Guo, Z.; Yin, C.; Wu, X.; Cheng, Q.; Wang, J.P.; Zhou, H.P. Research status and prospect of key technologies of fruit picking manipulator. Jiangsu J. Agric. Sci. 2024, 40, 1142–1152. [Google Scholar]
- Li, T.; Xie, F.; Zhao, Z.; Zhao, H.; Guo, X.; Feng, Q. A multi-arm robot system for efficient apple harvesting: Perception, task plan and control. Comput. Electron. Agric. 2023, 211, 107979. [Google Scholar] [CrossRef]
- Barnett, J.; Duke, M.; Au, C.K.; Lim, S.H. Work distribution of multiple Cartesian robot arms for kiwifruit harvesting. Comput. Electron. Agric. 2020, 169, 105202. [Google Scholar] [CrossRef]
- Gou, Y.; Yan, J.; Zhang, F.; Sun, C.Y.; Xu, Y. Research Progress on Vision System and Manipulator of Fruit Picking Robot. Comput. Eng. Appl. 2023, 59, 13–26. [Google Scholar]
- Zahid, A.; Mahmud, M.S.; He, L.; Choi, D.; Heinemann, P.; Schupp, J. Development of an integrated 3R end-effector with a cartesian manipulator for pruning apple trees. Comput. Electron. Agric. 2020, 179, 105837. [Google Scholar] [CrossRef]
- Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. An automated apple harvesting robot—From system design to field evaluation. J. Field Robot. 2024, 41, 2384–2400. [Google Scholar] [CrossRef]
- Yoshida, T.; Onishi, Y.; Kawahara, T.; Fukao, T. Automated harvesting by a dual-arm fruit harvesting robot. Robomech. J. 2022, 9, 19. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Q.; Niu, K.; Bai, S.; Wei, L.; Qiu, C.; Han, N. Design and Test of Seed–Fertilizer Replenishment Device for Wheat Seeder. Agriculture 2024, 14, 374. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Wang, Y.; Yang, S.; Wu, H.; Zhao, C. Design and experiment of an automatic cherry tomato harvesting system based on cascade vision detection. Trans. Chin. Soc. Agric. Eng. 2023, 39, 136–145. [Google Scholar]
- Xiong, Y.; Peng, C.; Grimstad, L.; From, P.J.; Isler, V. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper. Comput. Electron. Agric. 2019, 157, 392–402. [Google Scholar] [CrossRef]
- Zhuang, M.; Li, G.; Ding, K. Obstacle avoidance path planning for apple picking robotic arm incorporating artificial potential field and A* algorithm. IEEE Access 2023, 11, 100070–100082. [Google Scholar] [CrossRef]
- Fue, K.G.; Porter, W.M.; Barnes, E.M.; Rains, G.C. An extensive review of mobile agricultural robotics for field operations: Focus on cotton harvesting. AgriEng 2020, 2, 150–174. [Google Scholar] [CrossRef]
- SepúLveda, D.; Fernández, R.; Navas, E.; Armada, M.; González-De-Santos, P. Robotic aubergine harvesting using dual-arm manipulation. IEEE Access 2020, 8, 121889–121904. [Google Scholar] [CrossRef]
- Xiong, Z.; Feng, Q.; Li, T.; Xie, F.; Liu, C.; Liu, L.; Guo, X.; Zhao, C. Dual-Manipulator Optimal Design for Apple Robotic Harvesting. Agronomy 2022, 12, 3128. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, L.; He, Z.; Zhu, Y.; Wang, Y.; Li, K. Design and experiment of dual manipulators parallel harvesting platform for kiwifruit based on optimal space. Trans. Chin. Soc. Agric. Mach. 2022, 53, 132–143. [Google Scholar]
- Jiang, Y.; Liu, J.; Wang, J.; Li, W.; Peng, Y.; Shan, H. Development of a dual-arm rapid grape-harvesting robot for horizontal trellis cultivation. Front. Plant Sci. 2022, 13, 881904. [Google Scholar] [CrossRef]
- Zhang, H.; Li, X.; Wang, L.; Liu, D.; Wang, S. Construction and optimization of a collaborative harvesting system for multiple robotic arms and an end-picker in a trellised pear orchard environment. Agronomy 2023, 14, 80. [Google Scholar] [CrossRef]
- Arikapudi, R.; Vougioukas, S.G. Robotic Tree-fruit harvesting with arrays of Cartesian Arms: A study of fruit pick cycle times. Comput. Electron. Agric. 2023, 211, 108023. [Google Scholar] [CrossRef]
- Lammers, K.; Zhang, K.; Zhu, K.; Chu, P.; Li, Z.; Lu, R. Development and evaluation of a dual-arm robotic apple harvesting system. Comput. Electron. Agric. 2024, 227, 109586. [Google Scholar] [CrossRef]
- Yu, X.; Fan, Z.; Wang, X.; Wan, H.; Wang, P.; Zeng, X.; Jia, F. A lab-customized autonomous humanoid apple harvesting robot. Comput. Electr. Eng. 2021, 96, 107459. [Google Scholar] [CrossRef]
- Xiong, Y.; Ge, Y.; Grimstad, L.; From, P.J. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. J. Field Robot. 2020, 37, 202–224. [Google Scholar] [CrossRef]
- Williams, H.; Jones, M.; Nejati, M.; Seabright, M.; Bell, J.; Penhall, N.; Barnett, J.; Duck, M.; Scarfe, A.; Ahn, H.; et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 2019, 181, 140–156. [Google Scholar] [CrossRef]
- Shi, K.; Wu, Z.; Jiang, B.; Karimi, H.R. Dynamic path planning of mobile robot based on improved simulated annealing algorithm. J. Frankl. Inst. 2023, 360, 4378–4398. [Google Scholar] [CrossRef]
- Yang, S.; Jia, B.; Yu, T.; Yuan, J. Research on multiobjective optimization algorithm for cooperative harvesting trajectory optimization of an intelligent multiarm straw-rotting fungus harvesting robot. Agriculture 2022, 12, 986. [Google Scholar] [CrossRef]
- Kulathunga, G. A reinforcement learning based path planning approach in 3D environment. Procedia Comput. Sci. 2022, 212, 152–160. [Google Scholar] [CrossRef]
- Li, T.; Xie, F.; Qiu, Q.; Feng, Q. Multi-arm robot task planning for fruit harvesting using multi-agent reinforcement learning. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023; IEEE: New York, NY, USA, 2023; pp. 4176–4183. [Google Scholar]
- Gong, A.; Yang, K.; Lyu, J.; Li, X. A two-stage reinforcement learning-based approach for multi-entity task allocation. Eng. Appl. Artif. Intell. 2024, 136, 108906. [Google Scholar] [CrossRef]
- Feng, Z.; Hu, G.; Sun, Y.; Soon, J. An overview of collaborative robotic manipulation in multi-robot systems. Annu. Rev. Control. 2020, 49, 113–127. [Google Scholar] [CrossRef]
- Chou, J.S.; Molla, A. Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems. Sci. Rep. 2022, 12, 19157. [Google Scholar] [CrossRef] [PubMed]
- Nadimi-Shahraki, M.H.; Zamani, H.; Asghari Varzaneh, Z.; Mirjalili, S. A systematic review of the whale optimization algorithm: Theoretical foundation, improvements, and hybridizations. Arch. Comput. Methods Eng. 2023, 30, 4113–4159. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, X.; Wang, X. Path planning for mobile robot based on improved bat algorithm. Sensors 2021, 21, 4389. [Google Scholar] [CrossRef]
- Liu, Y.; As’ arry, A.; Hassan, M.K.; Hairuddin, A.A.; Mohamad, H. Review of the grey wolf optimization algorithm: Variants and applications. Neural Comput. Appl. 2024, 36, 2713–2735. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, Y.; Wang, J.; Zhao, L.; Wang, Q.; Shan, J. Path Planning for Mobile Robot Based on Improved Artificial Potential Field Method. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 4757–4762. [Google Scholar]
- Xie, J.; Zhang, Z.; Wei, Z.; Ma, S. Simulation of apple picking path planning based on artificial potential field method. IOP Conf. Ser. Earth Environ. Sci. 2019, 252, 052148. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, L.; Shao, Z. Path planning for obstacle avoidance of manipulators based on improved artificial potential field. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; IEEE: New York, NY, USA, 2019; pp. 2991–2996. [Google Scholar]
- Guo, H.; Qiu, Z.; Gao, G.; Wu, T.; Chen, H.; Wang, X. Safflower Picking Trajectory Planning Strategy Based on an Ant Colony Genetic Fusion Algorithm. Agriculture 2024, 14, 622. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, X. Autonomous obstacle avoidance path planning for grasping manipulator based on elite smoothing ant colony algorithm. Symmetry 2022, 14, 1843. [Google Scholar] [CrossRef]
- Yan, B.; Quan, J.; Yan, W. Three-Dimensional Obstacle Avoidance Harvesting Path Planning Method for Apple-Harvesting Robot Based on Improved Ant Colony Algorithm. Agriculture 2024, 14, 1336. [Google Scholar] [CrossRef]
- Ling, X.; Zhao, Y.; Gong, L.; Liu, C.; Wang, T. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision. Robot. Auton. Syst. 2019, 114, 134–143. [Google Scholar] [CrossRef]
- Bao, X.; Shi, X.; Ma, X.; Leng, J.; Ma, Z.; Ren, M.; Li, S. Design and experiment of citrus picking system based on dual robot collaboration. J. Eng. 2024, 2024, e12419. [Google Scholar] [CrossRef]
- Sheng, G.; Jie, Z.; He, C. Genetic algorithm-based path planning of coordinated multi-robot manipulators. In Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003, Changsha, China, 8–13 October 2003; Proceedings 2003. IEEE: New York, NY, USA, 2003; Volume 2, pp. 763–767. [Google Scholar]
- Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A multi-objective particle swarm optimization for trajectory planning of fruit picking manipulator. Agronomy 2021, 11, 2286. [Google Scholar] [CrossRef]
- Wang, M.; Luo, J.; Yuan, J.; Walter, U. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronaut. 2018, 146, 259–272. [Google Scholar] [CrossRef]
- Huang, W.; Miao, Z.; Wu, T.; Guo, Z.; Han, W.; Li, T. Design of and Experiment with a Dual-Arm Apple Harvesting Robot System. Horticulturae 2024, 10, 1268. [Google Scholar] [CrossRef]
- Cai, J.; Wang, F.; Lü, Q.; Wang, J. Real-time path planning for citrus picking robot based on SBL-PRM. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2009, 25, 158–162. [Google Scholar]
- Chen, G.; Luo, N.; Liu, D.; Zhao, Z.; Liang, C. Path planning for manipulators based on an improved probabilistic roadmap method. Robot. Comput.-Integr. Manuf. 2021, 72, 102196. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, W.; Liu, H.; Zhang, Y.; Hao, L. Research on the path planning algorithm of a manipulator based on GMM/GMR-MPRM. Appl. Sci. 2021, 11, 7599. [Google Scholar] [CrossRef]
- Cao, X.; Zou, X.; Jia, C.; Chen, M.; Zeng, Z. RRT-based path planning for an intelligent litchi-picking manipulator. Comput. Electron. Agric. 2019, 156, 105–118. [Google Scholar] [CrossRef]
- Ye, L.; Duan, J.; Yang, Z.; Zou, X.; Chen, M.; Zhang, S. Collision-free motion planning for the litchi-picking robot. Comput. Electron. Agric. 2021, 185, 106151. [Google Scholar] [CrossRef]
- Liu, C.; Feng, Q.; Tang, Z.; Wang, X.; Geng, J.; Xu, L. Motion planning of the citrus-picking manipulator based on the TO-RRT algorithm. Agriculture 2022, 12, 581. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Wang, X.; Fu, L.; Li, S. Adaptive Step RRT*-Based Method for Path Planning of Tea-Picking Robotic Arm. Sensors 2024, 24, 7759. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhao, H.; Li, Y.; Song, W.; Liu, M.; Tian, L.; Yan, X. Rapid citrus harvesting motion planning with pre-harvesting point and quad-tree. Comput. Electron. Agric. 2022, 202, 107348. [Google Scholar] [CrossRef]
- Wang, X.; Luo, X.; Han, B.; Chen, Y.; Liang, G.; Zheng, K. Collision-free path planning method for robots based on an improved rapidly-exploring random tree algorithm. Appl. Sci. 2020, 10, 1381. [Google Scholar] [CrossRef]
- Hui, L.; Shiyi, Z.; Yunpeng, D.; Weidong, J.; Yue, S. Orchard Robot Motion Planning Algorithm Based on Improved Bidirectional RRT. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2022, 53. [Google Scholar]
- Yang, L.; Da, X. Cooperative path planning of dual-arm robot based on attractive force self-dadptive step size RRT. Robot 2020, 42, 606–616. [Google Scholar]
- Kim, D.; Lim, S.; Lee, D.; Lee, J.; Han, C. An RRT-based motion planning of dual-arm robot for (Dis) assembly tasks. In Proceedings of the IEEE ISR 2013, Seoul, Republic of Korea, 24–26 October 2013; pp. 1–6. [Google Scholar]
- Shi, W.; Wang, K.; Zhao, C.; Tian, M. Obstacle avoidance path planning for the dual-arm robot based on an improved RRT algorithm. Appl. Sci. 2022, 12, 4087. [Google Scholar] [CrossRef]
- Gammell, J.; Srinivasa, S.; Barfoot, T. Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In Proceedings of the 2015 IEEE international conference on robotics and automation (ICRA), Seattle, WA, USA, 26–30 May 2015; IEEE: New York, NY, USA, 2015; pp. 3067–3074. [Google Scholar]
- Ma, P.; Zhu, A.; Chen, Y.; Tu, Y.; Mao, H.; Song, J.; Wang, X.; Su, S.; Li, D.; Dong, X. Multi objective motion planning of fruit harvesting manipulator based on improved BIT* algorithm. Comput. Electron. Agric. 2024, 227, 109567. [Google Scholar] [CrossRef]
- Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A survey on deep reinforcement learning algorithms for robotic manipulation. Sensors 2023, 23, 3762. [Google Scholar] [CrossRef]
- Cheng, Y.; Guo, Q.; Wang, X. Proximal Policy Optimization with Advantage Reuse Competition. IEEE Trans. Artif. Intell. 2024, 5, 3915–3925. [Google Scholar] [CrossRef]
- Wang, J.; Sun, H.; Zhu, C. Vision-based autonomous driving: A hierarchical reinforcement learning approach. IEEE Trans. Veh. Technol. 2023, 72, 11213–11226. [Google Scholar] [CrossRef]
- Qi, C.; Wu, C.; Lei, L.; Li, X.; Cong, P. UAV path planning based on the improved PPO algorithm. In Proceedings of the 2022 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE), Qingdao, China, 26–28 August 2022; IEEE: New York, NY, USA, 2022; pp. 193–199. [Google Scholar]
- Yang, S.; Wu, D.; Pan, Y.; He, Y. Research on Manipulator Control Based on Improved Proximal Policy Optimization Algorithm. In Proceedings of the 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 15–17 August 2022; IEEE: New York, NY, USA, 2022; pp. 4301–4306. [Google Scholar]
- Bo, Y.; Kun, W.; Xiang, M. Research on motion control method of manipulator based on reinforcement learning. Comput. Eng. Appl. 2023, 59, 318–325. [Google Scholar]
- Lin, J.; Wang, H.; Zou, X.; Zhang, P.; Li, C.; Zhou, Y.; Yao, S. Obstacle avoidance path planning and simulation of mobile picking robot based on DPPO. J. Syst. Simul. 2023, 35, 1692–1704. [Google Scholar]
- Li, X.; Zhang, J.; Guo, X.; Wu, G. Reinforcement learning-based optimization algorithm for energy management and path planning of robot chassis. Trans. Chin. Soc. Agric. Eng. 2024, 40, 175–183. [Google Scholar]
- Xie, T.; Zhou, Y. Ant colony enhanced q-learning algorithm for mobile robot path planning. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25–27 May 2024; IEEE: New York, NY, USA, 2024; pp. 5001–5006. [Google Scholar]
- Low, E.S.; Ong, P.; Low, C.Y.; Omar, R. Modified Q-learning with distance metric and virtual target on path planning of mobile robot. Expert Syst. Appl. 2022, 199, 117191. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, P.; Zheng, C.; Tian, L.; Tian, Y. A deep reinforcement learning strategy combining expert experience guidance for a fruit-picking manipulator. Electronics 2022, 11, 311. [Google Scholar] [CrossRef]
- Wang, Y.H.; Li, T.H.S.; Lin, C.J. Backward Q-learning: The combination of Sarsa algorithm and Q-learning. Eng. Appl. Artif. Intell. 2013, 26, 2184–2193. [Google Scholar] [CrossRef]
- Maoudj, A.; Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput. 2020, 97, 106796. [Google Scholar] [CrossRef]
- Li, Q.; Ma, H.; Xiao, H. Robot Path Planning Based on Improved DQN Algorithm. Comput. Telecommun. 2024, 1, 37–41. [Google Scholar]
- Wang, Y.; He, Z.; Cao, D.; Ma, L.; Li, K.; Jia, L.; Cui, Y. Coverage path planning for kiwifruit picking robots based on deep reinforcement learning. Comput. Electron. Agric. 2023, 205, 107593. [Google Scholar] [CrossRef]
- Yang, J.; Ni, J.; Li, Y.; Wen, J.; Chen, D. The intelligent path planning system of agricultural robot via reinforcement learning. Sensors 2022, 22, 4316. [Google Scholar] [CrossRef]
- Prianto, E.; Park, J.H.; Bae, J.H.; Kim, J.S. Deep reinforcement learning-based path planning for multi-arm manipulators with periodically moving obstacles. Appl. Sci. 2021, 11, 2587. [Google Scholar] [CrossRef]
- Xiong, C.; Xiong, J.; Yang, Z.; Hu, W. Path planning method for citrus picking manipulator based on deep reinforcement learning. J. South China Agric. Univ. 2023, 44, 473–483. [Google Scholar]
- Tao, B.; Kim, J.H. Deep reinforcement learning-based local path planning in dynamic environments for mobile robot. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102254. [Google Scholar] [CrossRef]
- Xiong, J.; Li, Z.; Chun, S.; Zheng, Z. Obstacle avoidance planning of virtual robot picking path based on deep reinforcement learning. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 1–10. [Google Scholar]
- Yang, S.; Xie, X.; Bing ZHao, J.; Zhang, X.; Yuan, D. Path Planning of Green Walnut Picking Robotic Arm Based on HER-TD3 Algorithm. Trans. Chin. Soc. Agric. Mach. 2024, 55, 113–123. [Google Scholar]
- Dong, Y.; Zou, X. Mobile robot path planning based on improved DDPG reinforcement learning algorithm. In Proceedings of the 2020 IEEE 11th International Conference on software engineering and service science (ICSESS), Beijing, China, 16–18 August 2020; IEEE: New York, NY, USA, 2020; pp. 52–56. [Google Scholar]
- Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [Google Scholar] [CrossRef]
- Chang, Z.; Po, G.; Hao, G.; Ye, T.; Yan, Z. Trajectory planning method for apple picking manipulator based on stepwise migration strategy. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2020, 51, 15–23. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gai, X.; Xu, C.; Liu, Y.; Feng, Q.; Wang, S. Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review. AgriEngineering 2025, 7, 192. https://doi.org/10.3390/agriengineering7060192
Gai X, Xu C, Liu Y, Feng Q, Wang S. Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review. AgriEngineering. 2025; 7(6):192. https://doi.org/10.3390/agriengineering7060192
Chicago/Turabian StyleGai, Xiaojian, Chang Xu, Yajia Liu, Qingchun Feng, and Shubo Wang. 2025. "Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review" AgriEngineering 7, no. 6: 192. https://doi.org/10.3390/agriengineering7060192
APA StyleGai, X., Xu, C., Liu, Y., Feng, Q., & Wang, S. (2025). Applications of Multi-Robotic Arms to Assist Agricultural Production: A Review. AgriEngineering, 7(6), 192. https://doi.org/10.3390/agriengineering7060192