Vacuum Energy Decay from a q-Bubble
Abstract
:1. Introduction
2. Theory and Setup
3. Bubble without Gravity
3.1. Preliminaries
3.2. Numerics
3.3. Discussion
- initially, the bubble wall gives rise to both out-moving and in-moving disturbances of the dimensionless vacuum energy density , where the in-moving disturbance makes for an increased energy density at the center;
- ultimately, there is an out-moving disturbance with a rapidly diminishing amplitude (asymptotically, from energy conservation).
4. Bubble with Gravity
4.1. Preliminaries and Ansätze
4.2. Dimensionless PDEs
4.3. Numerics
4.3.1. Numerical Procedure
4.3.2. Numerical Solutions
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Integro-Differential Equations
Appendix B. Bubble Interior
References
- Zel’dovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. The cosmological constant is probably zero. Phys. Lett. B 1984, 134, 403–404. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Self-tuning vacuum variable and cosmological constant. Phys. Rev. D 2008, 77, 085015. [Google Scholar] [CrossRef] [Green Version]
- Klinkhamer, F.R.; Volovik, G.E. Dynamic vacuum variable and equilibrium approach in cosmology. Phys. Rev. D 2008, 78, 063528. [Google Scholar] [CrossRef] [Green Version]
- Klinkhamer, F.R.; Volovik, G.E. Dynamic cancellation of a cosmological constant and approach to the Minkowski vacuum. Mod. Phys. Lett. A 2016, 31, 1650160. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Brane realization of q-theory and the cosmological constant problem. JETP Lett. 2016, 103, 627–630. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Tetrads and q-theory. JETP Lett. 2019, 109, 364–367. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Dynamics of the quantum vacuum: Cosmology as relaxation to the equilibrium state. J. Phys. Conf. Ser. 2011, 314, 012004. [Google Scholar] [CrossRef]
- Markkanen, T. De Sitter stability and coarse graining. Eur. Phys. J. C 2018, 78, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, H. Instability of de Sitter spacetime induced by quantum conformal anomaly. JCAP 2019, 1901, 003. [Google Scholar] [CrossRef]
- Ruutu, V.M.H.; Eltsov, V.B.; Gill, A.J.; Kibble, T.W.B.; Krusius, M.; Makhlin, Y.G.; Placais, B.; Volovik, G.E.; Xu, W. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 1996, 382, 334–336. [Google Scholar] [CrossRef] [Green Version]
- Coleman, S.R. The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 1977, 15, 2929–2936, Erratum in Phys. Rev. D 1977, 16, 1248. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R. The fate of the false vacuum. 2. First, quantum corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Coleman, S.R.; de Luccia, F. Gravitational effects on and of vacuum decay. Phys. Rev. D 1980, 21, 3305–3315. [Google Scholar] [CrossRef] [Green Version]
- Choptuik, M.W. Universality and scaling in gravitational collapse of a massless scalar field. Phys. Rev. Lett. 1993, 70, 9–12. [Google Scholar] [CrossRef]
- Marsa, R.L.; Choptuik, M.W. Black-hole–scalar-field interactions in spherical symmetry. Phys. Rev. D 1996, 54, 4929–4943. [Google Scholar] [CrossRef]
- Honda, E.P.; Choptuik, M.W. Fine structure of oscillons in the spherically symmetric ϕ4 Klein-Gordon model. Phys. Rev. D 2002, 65, 084037. [Google Scholar] [CrossRef]
- Choptuik, M.W.; Lehner, L.; Pretorius, F. Probing strong field gravity through numerical simulations. arXiv 2015, arXiv:1502.06853. [Google Scholar]
- Cardoso, V.; Gualtieri, L.; Herdeiro, C.; Sperhake, U. Exploring new physics frontiers through numerical relativity. Living Rev. Relativ. 2015, 18, 1. [Google Scholar] [PubMed]
- Klinkhamer, F.R.; Volovik, G.E. Propagating q-field and q-ball solution. Mod. Phys. Lett. A 2017, 32, 1750103. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. Dark matter from dark energy in q-theory. JETP Lett. 2017, 105, 74–77. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Volovik, G.E. More on cold dark matter from q-theory. arXiv 2016, arXiv:1612.04235. [Google Scholar]
- Klinkhamer, F.R.; Mistele, T. Classical stability of higher-derivative q-theory in the four-form-field-strength realization. Int. J. Mod. Phys. A 2017, 32, 1750090. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Abreu, G.; Visser, M. Kodama time: Geometrically preferred foliations of spherically symmetric spacetimes. Phys. Rev. D 2010, 82, 044027. [Google Scholar] [CrossRef]
- Schrödinger, E. Expanding Universes; Cambridge University Press: Cambridge, UK, 1956. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Painlevé, P. La mécanique classique et la théorie de la relativité. C. R. Acad. Sci. (Paris) 1921, 173, 677–680. [Google Scholar]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörper-problems in der Einsteinschen Gravitations-theorie. Arkiv. Mat. Astron. Fys. 1922, 16, 1–15. [Google Scholar]
- Martel, K.; Poisson, E. Regular coordinate systems for Schwarzschild and other spherical space-times. Am. J. Phys. 2001, 69, 476–480. [Google Scholar] [CrossRef]
- Volovik, G.E. Particle decay in de Sitter spacetime via quantum tunneling. JETP Lett. 2009, 90, 1–4. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinkhamer, F.R.; Santillán, O.P.; Volovik, G.E.; Zhou, A. Vacuum Energy Decay from a q-Bubble. Physics 2019, 1, 321-338. https://doi.org/10.3390/physics1030024
Klinkhamer FR, Santillán OP, Volovik GE, Zhou A. Vacuum Energy Decay from a q-Bubble. Physics. 2019; 1(3):321-338. https://doi.org/10.3390/physics1030024
Chicago/Turabian StyleKlinkhamer, Frans R., Osvaldo P. Santillán, Grigory E. Volovik, and Albert Zhou. 2019. "Vacuum Energy Decay from a q-Bubble" Physics 1, no. 3: 321-338. https://doi.org/10.3390/physics1030024
APA StyleKlinkhamer, F. R., Santillán, O. P., Volovik, G. E., & Zhou, A. (2019). Vacuum Energy Decay from a q-Bubble. Physics, 1(3), 321-338. https://doi.org/10.3390/physics1030024