Previous Issue
Volume 7, October
 
 

Chemistry, Volume 7, Issue 6 (December 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 1520 KB  
Article
Design, Synthesis, and Molecular Docking of New Hydrazide–Hydrazone Derivatives with Imidazole Scaffold as Potential Antimicrobial Agents
by Rita M. Borik
Chemistry 2025, 7(6), 172; https://doi.org/10.3390/chemistry7060172 - 23 Oct 2025
Abstract
The reaction of imidazole-5-carbohydrazide 1 with hydrazonyl halides 2a,b gave the corresponding hydrazide–hydrazone derivatives 3a,b. Afterwards, 3-methyl-5-(4-methyl-2-aryl-1H-imidazol-5-yl)-4-(2-phenylhydrazineylidene)-4H-pyrazole 4a,b was affordably produced by cyclizing the latter compounds 3a,b in EtOH with [...] Read more.
The reaction of imidazole-5-carbohydrazide 1 with hydrazonyl halides 2a,b gave the corresponding hydrazide–hydrazone derivatives 3a,b. Afterwards, 3-methyl-5-(4-methyl-2-aryl-1H-imidazol-5-yl)-4-(2-phenylhydrazineylidene)-4H-pyrazole 4a,b was affordably produced by cyclizing the latter compounds 3a,b in EtOH with Et3N at reflux temperature. The corresponding piperidinyl, morpholinyl, and piperazinyl derivatives 5a–f were produced by a nucleophilic substitution reaction of 3a,b with piperidine, morpholine, and 1-methylpiperazine in EtOH at reflux temperature. The condensation reaction of carbohydrazide 1 with either 3-acetyl-2H-chromen-2-one or 1-(benzofuran-2-yl)ethan-1-one in EtOH with AcOH at reflux temperature yielded the corresponding hydrazones 6 and 7, respectively, in excellent yields. Twelve compounds were evaluated for their antibacterial properties and to ascertain their minimum inhibitory concentrations utilizing well diffusion methods. All compounds showed differing levels of antibacterial efficacy depending on the microbial species. Compounds 4b and 5c had the most favorable results, with inhibition zones of 2.7 cm against the Gram-positive bacterium S. aureus, with a minimum inhibitory concentration (MIC) of 50 µg/mL. Compounds 4b and 5c, demonstrating the highest activity, were subjected to molecular docking investigations to evaluate their inhibitory effects on the enzyme L-glutamine: D-fructose-6-phosphate amidotransferase [GlcN-6-P] of 2VF5. The molecular docking results revealed that both 4b and 5c exhibited a minimum binding energy of −8.7 kcal/mol, whereas the natural ligand GLP displayed a binding energy of −6.2 kcal/mol, indicating a substantial affinity for the active site; thus, they may be considered potent inhibitors of GlcN-6-P synthase. Full article
Show Figures

Graphical abstract

11 pages, 1547 KB  
Article
Theoretical Analysis of Intermolecular Interactions in Cationic π-Stacked Dimer Models of Antiaromatic Molecules
by Kosei Nishino, Kenji Okada, Ryota Sugimori, Kohei Tada, Ryohei Kishi and Yasutaka Kitagawa
Chemistry 2025, 7(6), 171; https://doi.org/10.3390/chemistry7060171 - 23 Oct 2025
Viewed by 50
Abstract
We have theoretically examined the intermolecular interactions in the cationic states of π-stacked dimers of 4nπ antiaromatic molecules. The ground state of face-to-face π-dimer models, consisting of cyclobutadienes (CBDs), was analyzed as a function of the stacking distance (d) for their [...] Read more.
We have theoretically examined the intermolecular interactions in the cationic states of π-stacked dimers of 4nπ antiaromatic molecules. The ground state of face-to-face π-dimer models, consisting of cyclobutadienes (CBDs), was analyzed as a function of the stacking distance (d) for their monocationic and dicationic states using multi-reference second-order perturbation theory. Multi-configurational wavefunction analysis in a diabatic representation was employed to understand the electronic structures of the dimer models in terms of the monomer electron configurations. It is found that the monocationic dimer exhibits a local minimum at about d = 2.4 Å in the ground state, where each monomer is represented by a superposition between neutral triplet and cationic doublet electron configurations. Crossing of the ground and excited states occurs through changing d, which is due to the small energy gap between the highest occupied and lowest unoccupied molecular orbitals of antiaromatic molecules. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop