The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives
Abstract
:1. Introduction
1.1. Background
1.2. Research Questions and Objectives
- How is life cycle assessment essential to the use of electric vehicles in Qatar?
- How Qatar responds to the switch from the conventional ICEV to the use of electric vehicles?
- How efficient are electric vehicles in terms of the emission perspective?
- How much effort and progress is the Qatar government imputing in electric vehicles?
- To evaluate whether it is economically and practically feasible to use electric vehicles in Qatar using life cycle assessment.
- To understand the efficiency of electric vehicle usage in Qatar.
2. Decarbonization in Mobility: The Tale of Qatar
3. Materials and Methods
3.1. Life Cycle Assessment
3.2. Survey Design
4. Results and Analysis
4.1. Conventional ICE Vehicles: WTW Analysis
4.2. Electric Vehicles: WTW Analysis
4.2.1. Power Generation (BTU/kWh) & (gCO2e/m3)
4.2.2. NG Production, Processing, and Transportation (gCO2e/m3)
4.2.3. Vehicle Efficiency (gCO2e/100 km)
4.3. Social Factors That Influence the EVs Transformation in Qatar
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larminie, J.; Lowry, J. Electric Vehicle Technology Explained; John Wiley & Sons, Ltd.: Chichester, UK, 2003; ISBN 0470851635. [Google Scholar]
- Emadi, A. Advanced Electric Drive Vehicles; CRC Press, Taylor & Francis Group: Abingdon, UK, 2014; ISBN 9781138072855. [Google Scholar]
- Onat, N.C.; Kucukvar, M.; Afshar, S. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean. Prod. 2019, 212, 515–526. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Inter. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Onat, N.C.; Aboushaqrah, N.N.; Kucukvar, M.; Tarlochan, F.; Hamouda, A.M. From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Convers. Manag. 2020, 216, 112937. [Google Scholar] [CrossRef]
- Shaikh, M.A.; Kucukvar, M.; Onat, N.C.; Kirkil, G. A framework for water and carbon footprint analysis of national electricity production scenarios. Energy 2017, 139, 406–421. [Google Scholar] [CrossRef]
- Zhao, Y.; Onat, N.C.; Kucukvar, M.; Tatari, O. Carbon and energy footprints of electric delivery trucks: A hybrid multi-regional input-output life cycle assessment. Trans. Res. Part D Tran. Environ. 2016, 47, 195–207. [Google Scholar] [CrossRef]
- Sen, B.; Onat, N.C.; Kucukvar, M.; Tatari, O. Material footprint of electric vehicles: A multiregional life cycle assessment. J. Clean. Prod. 2019, 209, 1033–1043. [Google Scholar] [CrossRef]
- Aseel, S.; Al-Yafei, H.; Kucukvar, M.; Onat, N.C.; Turkay, M.; Kazancoglu, Y.; Al-Sulaiti, A.; Al-Hajri, A. A model for estimating the carbon footprint of maritime transportation of Liquefied Natural Gas under uncertainty. Sustain. Prod. Cons. 2021, 27, 1602–1613. [Google Scholar] [CrossRef]
- Kucukvar, M.; Samadi, H. Linking national food production to global supply chain impacts for the energy-climate challenge: The cases of the EU-27 and Turkey. J. Clean. Prod. 2015, 108, 395–408. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Appl. Energy 2015, 150, 36–49. [Google Scholar] [CrossRef]
- Elhmoud, E.R.; Kutty, A.A.; Abdalla, G.M.; Kucukvar, M.; Bulak, M.E.; Elkharaz, J.M. Eco-Efficiency Performance of Airlines in Eastern Asia: A Principal Component Analysis Based Sustainability Assessment. In Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore, 7–11 March 2021. [Google Scholar]
- Onat, N.C.; Noori, M.; Kucukvar, M.; Zhao, Y.; Tatari, O.; Chester, M. Exploring the suitability of electric vehicles in the United States. Energy 2017, 121, 631–642. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Zheng, Q.P. Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in US. J. Clean. Prod. 2016, 112, 291–307. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Well-to-wheel water footprints of conventional versus electric vehicles in the United States: A state-based comparative analysis. J. Clean. Prod. 2018, 204, 788–802. [Google Scholar] [CrossRef]
- Mesa, H.W. Energy Alternatives for the Transport Sector: The US and the EU Move in Different Directions (ARI). Elcano Newsl. 2011, 81, 1–7. [Google Scholar]
- Onat, N.C.; Kucukvar, M.; Aboushaqrah, N.N.M.; Jabbar, R. How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar. Appl. Energy 2019, 250, 461–477. [Google Scholar] [CrossRef]
- Egede, P.; Dettmer, T.; Herrmann, C.; Kara, S. Life Cycle Assessment of Electric Vehicles—A Framework to Consider Influencing Factors. Procedia CIRP 2015, 29, 233–238. [Google Scholar] [CrossRef]
- Kumar, R.; Padmanaban, S. Electric vehicles for India: Overview and challenges. IEEE India Inform. 2019, 14, 139–142. [Google Scholar]
- Ahmed, A.; Iqbal, A.; Khan, I.; Al-Wahedi, A.; Mehrjerdi, H.; Rahman, S. Impact of EV charging Station Penetration on Harmonic Distortion Level in Utility Distribution Network: A Case Study of Qatar. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021; IEEE: Philadelphia, PA, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Sahin, E.S.; Bayram, I.S.; Koc, M. Demand side management opportunities, framework, and implications for sustainable development in resource-rich countries: Case study Qatar. J. Clean. Prod. 2019, 241, 118332. [Google Scholar] [CrossRef]
- Khazaei, H.; Ali, K. Electric Vehicles and Factors That Influencing Their Adoption Moderating Effects of Driving Experience and Voluntariness of Use (Conceptual Framework). J. Bus. Manag. 2016, 18, 60–65. [Google Scholar]
- Razak, M.I.M.; Yusof, A.M.; Mashahadi, F.; Alias, Z.; Othman, M.Z. Intention to purchase hybrid cars in Malaysia an overview. Int. J. Econ. Commer. Manag. 2014, 2, 1–13. [Google Scholar]
- Yan, Q.; Qian, C.; Zhang, B.; Kezunovic, M. Statistical analysis and modeling of plug-in electric vehicle charging demand in distribution systems. In Proceedings of the 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP), San Antonio, TX, USA, 17–20 September 2017; IEEE: Philadelphia, PA, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Burd, J.T.J.; Moore, E.A.; Ezzat, H.; Kirchain, R.; Roth, R. Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Appl. Energy 2021, 283, 116269. [Google Scholar] [CrossRef]
- Meltzer, J.; Hultman, N.E.; Langley, C. Low-Carbon Energy Transitions in Qatar and the Gulf Cooperation Council Region; Global Economy and Development; Brookings Institution: Washington, DC, USA, 2014. [Google Scholar]
- Falcão, E.A.M.; Teixeira, A.C.R.; Sodré, J.R. Analysis of CO2 emissions and techno-economic feasibility of an electric commercial vehicle. Appl. Energy 2017, 193, 297–307. [Google Scholar] [CrossRef]
- Shafique, M.; Azam, A.; Rafiq, M.; Luo, X. Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong. Res. Transp. Econ. 2021, 101112. [Google Scholar] [CrossRef]
- Holland, S.P.; Mansur, E.T.; Muller, N.Z.; Yates, A.J. Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors. Am. Econ. Rev. 2016, 106, 3700–3729. [Google Scholar] [CrossRef] [Green Version]
- Baek, S.; Kim, H.; Chang, H. A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea. Sustainability 2016, 8, 964. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Egbue, O.; Long, S. Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy 2012, 48, 717–729. [Google Scholar] [CrossRef]
- Khandakar, A.; Rizqullah, A.; Ashraf Abdou Berbar, A.; Rafi Ahmed, M.; Iqbal, A.; Chowdhury, M.E.H.; Uz Zaman, S.M.A. A Case Study to Identify the Hindrances to Widespread Adoption of Electric Vehicles in Qatar. Energies 2020, 13, 3994. [Google Scholar] [CrossRef]
- Rakov, V.; Pikalev, O.; Akhmetov, T.; Budavina, T.; Smirnov, P. Assessment of feasibility of using the existing electric power infrastructure for charging electric and hybrid vehicles. E3S Web Conf. 2020, 178, 01056. [Google Scholar] [CrossRef]
- Cassani, P.A.; Williamson, S.S. Feasibility Analysis of a Novel Cell Equalizer Topology for Plug-In Hybrid Electric Vehicle Energy-Storage Systems. IEEE Trans. Veh. Technol. 2009, 58, 3938–3946. [Google Scholar] [CrossRef]
- Safak Bayram, I. A Stochastic Simulation Model to Assess the Impacts of Electric Vehicle Charging on Power Generation: A Case Study for Qatar. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 19–21 June 2019. [Google Scholar] [CrossRef]
- Ahmadi, L.; Young, S.B.; Fowler, M.; Fraser, R.A.; Achachlouei, M.A. A cascaded life cycle: Reuse of electric vehicle lithium-ion battery packs in energy storage systems. Int. J. Life Cycle Assess. 2017, 22, 111–124. [Google Scholar] [CrossRef]
- Young, K.; Wang, C.; Wang, L.Y.; Strunz, K. Electric Vehicle Battery Technologies. In Electric Vehicle Integration into Modern Power Networks; Springer: New York, NY, USA, 2013; pp. 15–56. [Google Scholar]
- Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006–2021. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles. Sustainability 2014, 6, 9305–9342. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, Z.; Jansson, J.; Bodin, J. Advances in consumer electric vehicle adoption research: A review and research agenda. Transp. Res. Part D Transp. Environ 2015, 34, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Lassila, J.; Haakana, J.; Tikka, V.; Partanen, J. Methodology to Analyze the Economic Effects of Electric Cars as Energy Storages. IEEE Trans. Smart Grid 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Luna, T.F.; Uriona-Maldonado, M.; Silva, M.E.; Vaz, C.R. The influence of e-carsharing schemes on electric vehicle adoption and carbon emissions: An emerging economy study. Transp. Res. Part D Transp. Environ. 2020, 79, 102226. [Google Scholar] [CrossRef]
- Gil-García, I.C.; García-Cascales, M.; Dagher, H.; Molina-García, A. Electric vehicle and renewable energy sources: Motor fusion in the energy transition from a multi-indicator perspective. Sustainability 2021, 13, 3430. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- The Joint Research Centre of European Commission. JEC Well-To-Tank Report v5; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Available online: https://www.fueleconomy.gov/feg/Find.do?action=sbs&id=41796 (accessed on 29 April 2021).
- Umm Al Houl Power. Environmental Development. Available online: https://ummalhoul.net/health-safety?k=Environmental-Development (accessed on 6 July 2021).
- Qatar Petroleum. Conversion Factors. Available online: https://qp.com.qa/en/Pages/ConversionFactor (accessed on 5 June 2021).
- Woo, J.R.; Choi, H.; Ahn, J. Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transp. Res. Part D Transp. Environ. 2017, 51, 340–350. [Google Scholar] [CrossRef]
- Tesla. European Union Energy Label. Available online: https://www.tesla.com/en_EU/support/european-union-energy-label?redirect=no (accessed on 29 July 2021).
- Onat, N.C.; Abdella, G.M.; Kucukvar, M.; Kutty, A.A.; Al-Nuaimi, M.; Kumbaroğlu, G.; Bulu, M. How eco-efficient are electric vehicles across Europe? A regionalized life cycle assessment-based eco-efficiency analysis. Sustain. Dev. 2020. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M. Carbon footprint of construction industry: A global review and supply chain analysis. Renew. Sustain. Energy Rev. 2020, 124, 109783. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Scope-based carbon footprint analysis of US residential and commercial buildings: An input–output hybrid life cycle assessment approach. Buil. Environ. 2014, 72, 53–62. [Google Scholar] [CrossRef]
- Kucukvar, M.; Egilmez, G.; Onat, N.C.; Samadi, H. A global, scope-based carbon footprint modeling for effective carbon reduction policies: Lessons from the Turkish manufacturing. Sustain. Prod. Cons. 2015, 1, 47–66. [Google Scholar] [CrossRef]
- Elhmoud, E.R.; Kutty, A.A. Sustainability Assessment in Aviation Industry: A Mini-Review on the Tools, Models and Methods of Assessment. In Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management, Harare, Zimbabwe, 7–10 December 2021. [Google Scholar]
- Kutty, A.A.; Al-Jurf, N.; Naser, A.F.; Kucukvar, M.; Ayad, H.; Al-Obadi, M.; Abdella, G.M.; Bulak, M.E.; Elkharaz, J.M. Optimizing University Campus Shuttle Bus Congestion Focusing on System Effectiveness and Reliability: A Combined Modeling Based-Routing Approach. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Sao Paulo, Brazil, 5–8 April 2021. [Google Scholar]
- Onat, N.C.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems thinking for life cycle sustainability assessment: A review of recent developments, applications, and future perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Kutty, A.A.; Abdella, G.M.; Kucukvar, M.; Onat, N.C.; Bulu, M. A system thinking approach for harmonizing smart and sustainable city initiatives with United Nations sustainable development goals. Sustain. Dev. 2020, 28, 1347–1365. [Google Scholar] [CrossRef]
Measure | Unit | Value |
---|---|---|
Power capacity | MW | 2520 |
Electricity generation | MWh | 9,909,545 |
Gas consumptions | MMBTU | 81,074,781 |
Scope-1 emissions | tCO2e | 2,006,858.25 |
Stage | |
---|---|
NG Production | 75.43 |
NG sweetening | 263.1 |
Stage | Emissions (gCO2e/m3) | Emissions (gCO2e/kWh) | Contribution | Source |
---|---|---|---|---|
NG production | 75.43 | 17.3 | 6.1% | Ecoinvent v3.7.1 |
NG processing (sweetening) | 263.1 | 60.3 | 21.3% | Ecoinvent V3.7.1 |
NG onshore pipeline 100 km transportation | 11.52 | 2.6 | 0.9% | Ecoinvent V3.7.1 |
Umm Alhoul combined cycle power plant | 883.55 | 202.5 | 71.6% | Calculated based on real data |
Total emissions | 1233.6 | 282.7 | 100% |
Brand | Prototype | Classification | EVe (kWh/100 km) | Emissions (gCO2e/100 km) |
---|---|---|---|---|
Nissan leaf | Compact hatchback | 16.6 | 2693 | |
Tesla Model X | Sedan | 22.6 | 6389 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Buenain, A.; Al-Muhannadi, S.; Falamarzi, M.; Kutty, A.A.; Kucukvar, M.; Onat, N.C. The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives. Vehicles 2021, 3, 618-635. https://doi.org/10.3390/vehicles3030037
Al-Buenain A, Al-Muhannadi S, Falamarzi M, Kutty AA, Kucukvar M, Onat NC. The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives. Vehicles. 2021; 3(3):618-635. https://doi.org/10.3390/vehicles3030037
Chicago/Turabian StyleAl-Buenain, Ahmad, Saeed Al-Muhannadi, Mohammad Falamarzi, Adeeb A. Kutty, Murat Kucukvar, and Nuri C. Onat. 2021. "The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives" Vehicles 3, no. 3: 618-635. https://doi.org/10.3390/vehicles3030037
APA StyleAl-Buenain, A., Al-Muhannadi, S., Falamarzi, M., Kutty, A. A., Kucukvar, M., & Onat, N. C. (2021). The Adoption of Electric Vehicles in Qatar Can Contribute to Net Carbon Emission Reduction but Requires Strong Government Incentives. Vehicles, 3(3), 618-635. https://doi.org/10.3390/vehicles3030037