Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation
Abstract
:1. Introduction
2. Related Works
2.1. Large-Scale Microscopic Traffic Simulations
City (Year) | Area in km² | N Trips | Running Vehicles | Period | Demand Source |
---|---|---|---|---|---|
Cologne [1] (2014) | 400 | 700,000 | up to 15,000 | 24 h | demographic |
Bologna [14] (2015) | N/A | N/A | N/A | 1 h | detectors |
Luxembourg [15] (2017) | 156 | N/A | N/A | 24 h | demographic |
London [17] (2017) | N/A | N/A | N/A | 2 h | detectors |
Shanghai [19] (2018) | 800 | N/A | N/A | N/A | taxi fleet |
Alicante-Murcia [10] (2021) | N/A 1 | N/A | N/A | 9 days | detectors |
Turin [16] (2022) | 600 | 2,202,814 | up to 20,000 | 24 h | demographic |
Ingolstadt [3] (2022) | N/A | N/A | N/A | 24 h | demographic |
Brussels [9] (2023) | 150 2 | N/A | N/A | 16 h | detectors, HybridIoT |
This work | 930 | 18,874 | about 4300 | 1 h | detectors, probe counts |
2.2. Road Matching
3. Methodology
3.1. Overview
- <data>
- <interval id="1" begin="0" end="3599">
- <edge id="-1009301209" entered="20"/>
- <edge id="-1010139007" entered="215"/>
- <edge id="-1010774407" entered="145"/>
- …
- </interval>
- …
- </data>
3.2. Road Networks for Simulation
3.3. Traffic Count Numbers
3.4. Road Network Matching
3.4.1. Similarity Metrics
3.4.2. Preprocessing
3.4.3. The ML Model
3.5. The SUMO Traffic Simulation
3.6. Evaluation Metrics
4. Results
4.1. Road Network Matching
4.2. ROUTESAMPLER
4.3. Microscopic Simulation in SUMO
5. Discussion
5.1. Road Network Matching
5.2. Traffic Simulation
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BAYSIS | BAYerisches StraßenInformationsSystem |
CAV | Connected and Automated Vehicle |
FCD | floating car data |
GEH | Geoffrey E. Havers |
ML | machine learning |
O-D | origin–destination |
OSM | OpenStreetMap |
SUMO | Simulation of Urban Mobility |
VANET | vehicular ad hoc network |
Appendix A. Similarity Metrics
Appendix A.1. Sinuosity Similarity
Appendix A.2. Discrete Fréchet Distance
References
- Uppoor, S.; Trullols-Cruces, O.; Fiore, M.; Barcelo-Ordinas, J.M. Generation and Analysis of a Large-Scale Urban Vehicular Mobility Dataset. IEEE Trans. Mob. Comput. 2014, 13, 1061–1075. [Google Scholar] [CrossRef]
- Miucic, R. Introduction. In Connected Vehicles; Miucic, R., Ed.; Wireless Networks Series; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Lobo, S.; Neumeier, S.; Fernandez, E.M.G.; Facchi, C. InTAS—The Ingolstadt Traffic Scenario for SUMO. In Proceedings of the SUMO User Conference 2020, Virtual, 26–28 October 2020; pp. 73–92. [Google Scholar] [CrossRef]
- Wang, Y.; de Veciana, G.; Shimizu, T.; Lu, H. Deployment and Performance of Infrastructure to Assist Vehicular Collaborative Sensing. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Bajpai, S.; Sahoo, G.K.; Kumar Das, S.; Singh, P. An Efficient Inter-Vehicle Communication Framework on Road Traffic Accident Detection using OMNET++ and SUMO. In Proceedings of the 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), Gunupur, India, 15–17 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; Wiessner, E. Microscopic Traffic Simulation using SUMO. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar] [CrossRef]
- Tsanakas, N.; Gundlegård, D.; Rydergren, C. O–D matrix estimation based on data-driven network assignment. Transp. B Transp. Dyn. 2023, 11, 376–407. [Google Scholar] [CrossRef]
- Abrahamsson, T. Estimation of Origin-Destination Matrices Using Traffic Counts—A Literature Survey; Technical Report IR-98-021; IIASA: Laxenburg, Austria, 1998. [Google Scholar]
- Guastella, D.A.; Cornelis, B.; Bontempi, G. Traffic Simulation with Incomplete Data: The Case of Brussels. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Methods for Enriched Mobility Data: Emerging Issues and Ethical Perspectives 2023, Hamburg, Germany, 13 November 2023; pp. 15–24. [Google Scholar] [CrossRef]
- Gonzalez-Delicado, J.J.; Gozalvez, J.; Mena-Oreja, J.; Sepulcre, M.; Coll-Perales, B. Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO. IEEE Access 2021, 9, 154423–154434. [Google Scholar] [CrossRef]
- Dabbas, H.; Fourati, W.; Friedrich, B. Floating Car Data for Traffic Demand Estimation—Field and Simulation Studies. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Zuo, X.-Q.; Zhang, L.-T.; Chen, Z.-T. Traffic Congestion Detection Based On GPS Floating-Car Data. Procedia Eng. 2011, 15, 5541–5546. [Google Scholar] [CrossRef]
- Tomtom. Traffic Stats. Available online: https://www.tomtom.com/products/traffic-stats/ (accessed on 22 January 2024).
- Bieker, L.; Krajzewicz, D.; Morra, A.; Michelacci, C.; Cartolano, F. Traffic Simulation for All: A Real World Traffic Scenario from the City of Bologna. In Modeling Mobility with Open Data; Behrisch, M., Weber, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 47–60. [Google Scholar]
- Codeca, L.; Frank, R.; Faye, S.; Engel, T. Luxembourg SUMO Traffic (LuST) Scenario: Traffic Demand Evaluation. IEEE Intell. Transp. Syst. Mag. 2017, 9, 52–63. [Google Scholar] [CrossRef]
- Rapelli, M.; Casetti, C.; Gagliardi, G. Vehicular Traffic Simulation in the City of Turin From Raw Data. IEEE Trans. Mob. Comput. 2022, 21, 4656–4666. [Google Scholar] [CrossRef]
- Ketabi, R.; Alipour, B.; Helmy, A. En route: Towards vehicular mobility scenario generation at scale. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 839–844. [Google Scholar] [CrossRef]
- Flötteröd, G. A search acceleration method for optimization problems with transport simulation constraints. Transp. Res. Part B Methodol. 2017, 98, 239–260. [Google Scholar] [CrossRef]
- Xia, F.; Rahim, A.; Kong, X.; Wang, M.; Cai, Y.; Wang, J. Modeling and Analysis of Large-Scale Urban Mobility for Green Transportation. IEEE Trans. Ind. Inform. 2018, 14, 1469–1481. [Google Scholar] [CrossRef]
- Yu, W.; Liu, M. An iterative framework with active learning to match segments in road networks. Cartogr. Geogr. Inf. Sci. 2023, 50, 333–350. [Google Scholar] [CrossRef]
- Wu, H.; Xu, S.; Huang, S.; Wang, J.; Yang, X.; Liu, C.; Zhang, Y. Optimal road matching by relaxation to min-cost network flow. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103057. [Google Scholar] [CrossRef]
- Klein, M. A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems. Manag. Sci. 1967, 14, 205–220. [Google Scholar] [CrossRef]
- Zuo, Z.; Yang, L.; An, X.; Zhen, W.; Qian, H.; Dai, S. A Hierarchical Matching Method for Vectorial Road Networks Using Delaunay Triangulation. ISPRS Int. J. Geo-Inf. 2020, 9, 509. [Google Scholar] [CrossRef]
- Guo, Q.; Xu, X.; Wang, Y.; Liu, J. Combined Matching Approach of Road Networks Under Different Scales Considering Constraints of Cartographic Generalization. IEEE Access 2020, 8, 944–956. [Google Scholar] [CrossRef]
- Hacar, M.; Gökgöz, T. A new approach for matching road lines using efficiency rates of similarity measures. Int. J. Eng. Geosci. 2021, 6, 146–156. [Google Scholar] [CrossRef]
- BAYSIS. Dauerzählstellen. Available online: https://www.baysis.bayern.de/internet/verdat/dauz/index.html (accessed on 14 February 2024).
- OpenStreetMap. OpenStreetMap Wiki: Key:Highway. Available online: https://wiki.openstreetmap.org/wiki/Key:highway (accessed on 8 March 2024).
- Tomtom. Traffic Stats Documentation: Product Information—FAQ. Available online: https://developer.tomtom.com/traffic-stats/documentation/product-information/faq (accessed on 8 March 2024).
- Sun, Y.; Lu, Y.; Ding, Z.; Wen, Q.; Li, J.; Liu, Y.; Yao, K. Multi-Scale Road Matching Based on the Summation Product of Orientation and Distance and Shape Descriptors. ISPRS Int. J. Geo-Inf. 2023, 12, 457. [Google Scholar] [CrossRef]
- Veihelmann, T.; Seifaei, M.; Lübke, M.; Franchi, N. Leveraging Gradient-Boosted Trees to Combine FFT, Correlation, and Fréchet-distance Features for Clear-sky Detection. In Proceedings of the 40th European Photovoltaic Solar Energy Conference and Exhibition, Lisbon, Portugal, 18–22 September 2023; pp. 020458-001–020458-005. [Google Scholar] [CrossRef]
- Zhang, M. Methods and Implementations of Road-Network Matching. Ph.D. Thesis, Technische Universität München, Munich, Germany, 14 October 2009. [Google Scholar]
- Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef]
- Turney, P.D.; Pantel, P. From Frequency to Meaning: Vector Space Models of Semantics. J. Artif. Intell. Res. 2010, 37, 141–188. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar] [CrossRef]
- Department for Transport. TAG UNIT M3.1: Highway Assignment Modelling. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/938864/tag-m3-1-highway-assignment-modelling.pdf (accessed on 27 February 2024).
- Friedrich, M.; Pestel, E.; Schiller, C.; Simon, R. Scalable GEH: A Quality Measure for Comparing Observed and Modeled Single Values in a Travel Demand Model Validation. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 722–732. [Google Scholar] [CrossRef]
- Schweizer, J.; Poliziani, C.; Rupi, F.; Morgano, D.; Magi, M. Building a Large-Scale Micro-Simulation Transport Scenario Using Big Data. ISPRS Int. J. Geo-Inf. 2021, 10, 165. [Google Scholar] [CrossRef]
- Stolum, H.H. River Meandering as a Self-Organization Process. Science 1996, 271, 1710–1713. [Google Scholar] [CrossRef]
- Eiter, T.; Mannila, H. Computing Discrete Frechet Distance: CD-TR 94/64; Technical report; Christian Doppler Labor für Expertensysteme, Technical University of Vienna: Vienna, Austria, 1994. [Google Scholar]
Accuracy | Precision | Recall | F1-Score | |
---|---|---|---|---|
Decision tree | 98.2 | 97.8 | 98.7 | 98.2 |
Gradient boosting 1 | 99.5 | 100.0 | 99.0 | 99.5 |
Accuracy | Precision | Recall | F1-Score | |
---|---|---|---|---|
Decision tree | 93.5 | 92.7 | 98.8 | 95.6 |
Gradient boosting | 92.9 | 91.8 | 99.0 | 95.3 |
Ground truth | ||||
Prediction | Match | Non-match | Total | |
Match | 732 | 58 | 790 | |
Non-match | 9 | 229 | 238 | |
Total | 741 | 287 | 1028 |
Total Count | Achieved | Underflow | Overflow | GEH < 5 | |
---|---|---|---|---|---|
Statistics | 881,521 | 838,015 | 43,838 | −332 | 94.49% |
Statistic | Value |
---|---|
Number of vehicles 1 | 23,192 |
Final running vehicles | 4318 |
Final waiting vehicles | 3468 |
Total vehicle trips | 18,874 |
Mean route length in km | 14.16 |
Mean velocity in m/s | 24.32 |
Mean trip duration in s | 627.7 |
Mean waiting time in s | 15.68 |
Teleports 2 | 0 |
Emergency stops | 0 |
Collisions | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veihelmann, T.; Shatov, V.; Lübke, M.; Franchi, N. Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation. Vehicles 2024, 6, 747-764. https://doi.org/10.3390/vehicles6020035
Veihelmann T, Shatov V, Lübke M, Franchi N. Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation. Vehicles. 2024; 6(2):747-764. https://doi.org/10.3390/vehicles6020035
Chicago/Turabian StyleVeihelmann, Tobias, Victor Shatov, Maximilian Lübke, and Norman Franchi. 2024. "Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation" Vehicles 6, no. 2: 747-764. https://doi.org/10.3390/vehicles6020035
APA StyleVeihelmann, T., Shatov, V., Lübke, M., & Franchi, N. (2024). Using Probe Counts to Provide High-Resolution Detector Data for a Microscopic Traffic Simulation. Vehicles, 6(2), 747-764. https://doi.org/10.3390/vehicles6020035