Next-Generation Sequencing in Lung Cancers—A Single-Center Experience in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Stratification of Genetic Alternations
2.3. Statistical Analyses
3. Results
3.1. Clinicopathological Profile
3.2. Overall Mutational Profile
3.3. Subgroup Analysis of Biomarker Frequency
3.4. Use of Matched Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.-H.; Chiu, C.-H.; Kuo, C.-H.S.; Chou, T.-Y.; Yeh, Y.-C.; Hsu, H.-S.; Yen, S.-H.; Wu, Y.-H.; Yang, J.C.-H.; Liao, B.-C.; et al. Lung Cancer in Republic of China. J. Thorac. Oncol. 2021, 16, 519–527. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Liang, K.-H.; Huang, H.-C.; Shen, C.-I.; Chiang, C.-L.; Wang, M.-L.; Chiou, S.-H.; Chen, Y.-M. State-of-the-Art Molecular Oncology of Lung Cancer in Taiwan. Int. J. Mol. Sci. 2022, 23, 7037. [Google Scholar] [CrossRef]
- Huang, S.-F.; Liu, H.-P.; Li, L.-H.; Ku, Y.-C.; Fu, Y.-N.; Tsai, H.-Y.; Chen, Y.-T.; Lin, Y.-F.; Chang, W.-C.; Kuo, H.-P.; et al. High Frequency of Epidermal Growth Factor Receptor Mutations with Complex Patterns in Non–Small Cell Lung Cancers Related to Gefitinib Responsiveness in Taiwan. Clin. Cancer Res. 2004, 10, 8195–8203. [Google Scholar] [CrossRef]
- Izumi, M.; Suzumura, T.; Ogawa, K.; Matsumoto, Y.; Sawa, K.; Yoshimoto, N.; Tani, Y.; Watanabe, T.; Kaneda, H.; Mitsuoka, S.; et al. Differences in Molecular Epidemiology of Lung Cancer among Ethnicities (Asian vs. Caucasian). J. Thorac. Dis. 2020, 12, 3776–3784. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Ho, C.-C.; Lin, Y.-T.; Liao, W.-Y.; Chen, C.-Y.; Shih, J.-Y.; Yu, C.-J. Comprehensive Genomic Analysis of Patients with Non–Small-Cell Lung Cancer Using Blood-Based Circulating Tumor DNA Assay: Findings from the Bfast Database of a Single Center in Taiwan. JCO Precis. Oncol. 2024, 8, e2300314. [Google Scholar] [CrossRef]
- Miller, M.; Hanna, N. Advances in Systemic Therapy for Non-Small Cell Lung Cancer. BMJ 2021, 375, n2363. [Google Scholar] [CrossRef]
- Arbour, K.C.; Gregory, J.R. Systemic Therapy for Locally Advanced and Metastatic Non–Small Cell Lung Cancer: A Review. J. Am. Med. Assoc. 2019, 322, 764–774. [Google Scholar] [CrossRef]
- Chakravarty, D.; Gao, J.; Phillips, S.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. Oncokb: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 2017, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. WHO Classification of Thoracic Tumours; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Kerr, K.M.; Bibeau, F.; Thunnissen, E.; Botling, J.; Ryška, A.; Wolf, J.; Öhrling, K.; Burdon, P.; Malapelle, U.; Büttner, R. The Evolving Landscape of Biomarker Testing for Non-Small Cell Lung Cancer in Europe. Lung Cancer 2021, 154, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Pennell, N.A.; Arcila, M.E.; Gandara, D.R.; West, H. Biomarker Testing for Patients with Advanced Non–Small Cell Lung Cancer: Real-World Issues and Tough Choices. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Collisson, E.A.; Joshua, D.C.; Angela, N.B.; Alice, H.B.; William, L.; Juliann, C.; David, G.B.; Leslie, C.; Chad, J.C.; Ludmila, D.; et al. Comprehensive Molecular Profiling of Lung Adenocarcinoma. Nature 2014, 511, 543–550. [Google Scholar]
- Zhou, Y.-J.; Zheng, W.; Zeng, Q.-H.; Ye, Y.; Wang, C.; Fang, C.; Liu, C.-J.; Niu, L.; Wu, L.-M. Targeted Exome Sequencing Identifies Mutational Landscape in a Cohort of 1500 Chinese Patients with Non-Small Cell Lung Carcinoma (Nsclc). Hum. Genom. 2021, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Tsoulos, N.; Papadopoulou, E.; Metaxa-Mariatou, V.; Tsaousis, G.N.; Efstathiadou, C.; Tounta, G.; Scapeti, A.; Bourkoula, E.; Zarogoulidis, P.; Pentheroudakis, G.; et al. Tumor Molecular Profiling of Nsclc Patients Using Next Generation Sequencing. Oncol. Rep. 2017, 38, 3419–3429. [Google Scholar] [CrossRef]
- Ettinger, D.S.; Douglas, E.W.; Dara, L.A.; Wallace, A.; Jessica, R.B.; Ankit, B.; Debora, S.B.; Joe, Y.C.; Lucian, R.C.; Thomas, A.D.; et al. Non–Small Cell Lung Cancer, Version 3.2022, Nccn Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2022, 20, 497–530. [Google Scholar] [CrossRef]
- VanderLaan, P.A.; Rangachari, D.; Costa, D.B. The Rapidly Evolving Landscape of Biomarker Testing in Non-Small Cell Lung Cancer. Cancer Cytopathol. 2020, 129, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Jonna, S.; Feldman, R.A.; Swensen, J.; Gatalica, Z.; Korn, W.M.; Borghaei, H.; Ma, P.C.; Nieva, J.J.; Spira, A.I.; Vanderwalde, A.M.; et al. Detection of Nrg1 Gene Fusions in Solid Tumors. Clin. Cancer Res. 2019, 25, 4966–4972. [Google Scholar] [CrossRef]
- Chang, J.C.; Offin, M.; Falcon, C.; Brown, D.; Houck-Loomis, B.R.; Meng, F.; Rudneva, V.A.; Won, H.H.; Amir, S.; Montecalvo, J.; et al. Comprehensive Molecular and Clinicopathologic Analysis of 200 Pulmonary Invasive Mucinous Adenocarcinomas Identifies Distinct Characteristics of Molecular Subtypes. Clin. Cancer Res. 2021, 27, 4066–4076. [Google Scholar] [CrossRef]
- Laskin, J.; Liu, S.V.; Tolba, K.; Heining, C.; Schlenk, R.F.; Cheema, P.; Cadranel, J.; Jones, M.R.; Drilon, A.; Cseh, A.; et al. Nrg1 Fusion-Driven Tumors: Biology, Detection, and the Therapeutic Role of Afatinib and Other Erbb-Targeting Agents. Ann. Oncol. 2020, 31, 1693–1703. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, S.H.; Choi, M.; Bae, Y.-K.; Han, C.; Choi, B.K.; Kim, S.S.; Han, J.-Y. Oncogenic Kras Promotes Growth of Lung Cancer Cells Expressing Slc3a2-Nrg1 Fusion Via Adam17-Mediated Shedding of Nrg1. Oncogene 2021, 41, 280–292. [Google Scholar] [CrossRef]
- Harvey, R.D.; Adams, V.R.; Beardslee, T.; Medina, P. Afatinib for the Treatment of Egfr Mutation-Positive Nsclc: A Review of Clinical Findings. J. Oncol. Pharm. Pract. 2020, 26, 1461–1474. [Google Scholar] [CrossRef]
- Gay, N.D.; Wang, Y.; Beadling, C.; Warrick, A.; Neff, T.; Corless, C.L.; Tolba, K. Durable Response to Afatinib in Lung Adenocarcinoma harboring Nrg1 Gene Fusions. J. Thorac. Oncol. 2017, 12, e107–e110. [Google Scholar] [CrossRef]
- Drilon, A.; Somwar, R.; Mangatt, B.P.; Edgren, H.; Desmeules, P.; Ruusulehto, A.; Smith, R.S.; Delasos, L.; Vojnic, M.; Plodkowski, A.J.; et al. Response to Erbb3-Directed Targeted Therapy in Nrg1-Rearranged Cancers. Cancer Discov. 2018, 8, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Cheema, P.K.; Doherty, M.; Tsao, M.-S. A Case of Invasive Mucinous pulmonary Adenocarcinoma with a Cd74-Nrg1 Fusion Protein Targeted with Afatinib. J. Thorac. Oncol. 2017, 12, e200–e202. [Google Scholar] [CrossRef] [PubMed]
- Coleman, N.; Hong, L.; Zhang, J.; Heymach, J.; Hong, D.; Le, X. Beyond Epidermal Growth Factor Receptor: Met Amplification as a General Resistance Driver to Targeted Therapy in Oncogene-Driven Non-Small-Cell Lung cancer. ESMO Open 2021, 6, 100319. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of Resistance to Egfr-Targeted Drugs: Lung Cancer. ESMO Open 2016, 1, e000060. [Google Scholar] [CrossRef]
- Nagasaka, M.; Singh, V.; Baca, Y.; Sukari, A.; Kim, C.; Mamdani, H.; Spira, A.I.; Uprety, D.; Bepler, G.; Kim, E.S.; et al. The Effects of Her2 Alterations in Egfr Mutant Non-Small Cell Lung Cancer. Clin. Lung Cancer 2021, 23, 52–59. [Google Scholar] [CrossRef]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.-M.; Zhao, X.; Christensen, J.; et al. Met Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating Erbb3 Signaling. Science 2007, 316, 1039–1043. [Google Scholar] [CrossRef]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients with Her2-Mutant Lung Cancers: Results from a Phase Ii Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in Her2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Michaels, E.; Bestvina, C.M. Meeting an Un-Met Need: Targeting Met in Non-Small Cell Lung Cancer. Front. Oncol. 2022, 12, 1004198. [Google Scholar] [CrossRef]
- Camidge, D.R.; Otterson, G.A.; Clark, J.W.; Ou, S.-H.I.; Weiss, J.; Ades, S.; Shapiro, G.I.; Socinski, M.A.; Murphy, D.A.; Conte, U.; et al. Crizotinib in Patients with Met-Amplified Nsclc. J. Thorac. Oncol. 2021, 16, 1017–1029. [Google Scholar] [CrossRef]
- Duke, E.S.; Stapleford, L.; Drezner, N.; Amatya, A.K.; Mishra-Kalyani, P.S.; Shen, Y.-L.; Maxfield, K.; Zirkelbach, J.F.; Bi, Y.; Liu, J.; et al. Fda Approval Summary: Mobocertinib for Metastatic Non-Small Cell Lung Cancer with Egfr Exon 20 Insertion Mutations. Clin. Cancer Res. 2022, 29, 508–512. [Google Scholar] [CrossRef]
- Vathiotis, I.A.; Bafaloukos, D.; Syrigos, K.N.; Samonis, G. Evolving Treatment Landscape of Her2-Mutant Non-Small Cell Lung Cancer: Trastuzumab Deruxtecan and Beyond. Cancers 2023, 15, 1286. [Google Scholar] [CrossRef]
- Goto, K.; Sang-We, K.; Kubo, T.; Goto, Y.; Ahn, M.-J.; Planchard, D.; Kim, D.-W.; Yang, J.-H.; Yang, T.-Y.; Pereira, K.; et al. Lba55 Trastuzumab Deruxtecan (T-Dxd) in Patients (Pts) with Her2-Mutant Metastatic Non-Small Cell Lung Cancer (Nsclc): Interim Results from the Phase 2 Destiny-Lung02 Trial. Ann. Oncol. 2022, 33, S1422. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.; Tan, D.S.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in Met Exon 14–Mutated or Met-Amplified Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef] [PubMed]
- Le, X.; Paz-Ares, L.G.; Van Meerbeeck, J.; Viteri, S.; Galvez, C.C.; Smit, E.F.; Garassino, M.; Veillon, R.; Baz, D.V.; Pradera, J.F.; et al. Tepotinib in Patients with Non-Small Cell Lung Cancer with High-Level Met Amplification Detected by Liquid Biopsy: Vision Cohort B. Cell Rep. Med. 2023, 4, 101280. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.-H.I.; Kwak, E.L.; Siwak-Tapp, C.; Dy, J.; Bergethon, K.; Clark, J.W.; Camidge, D.R.; Solomon, B.J.; Maki, R.G.; Bang, Y.-J.; et al. Activity of Crizotinib (Pf02341066), a Dual Mesenchymal-Epithelial Transition (Met) and Anaplastic Lymphoma Kinase (Alk) Inhibitor, in a Non-Small Cell Lung Cancer Patient with De Novo Met Amplification. J. Thorac. Oncol. 2011, 6, 942–946. [Google Scholar] [CrossRef]
Case No., (%) | ||
---|---|---|
Age | 42–86 (median 66) | |
Gender | ||
Female | 39 (53.4) | |
Male | 34 (46.6) | |
Histopathology | ||
Adenocarcinomas | 67 (91.8) | |
Squamous cell carcinoma | 2 (2.7) | |
Adenosquamous carcinoma | 1 (1.4) | |
Lymphoepithelial carcinoma | 1 (1.4) | |
Large cell neuroendocrine carcinoma | 1 (1.4) | |
Sarcomatoid carcinoma | 1 (1.4) | |
Stage | ||
≤IIIA | 9 (12.3) | |
≥IIB | 64 (87.7) | |
Disease status at specimen acquisition | ||
Initial diagnosis | 29 (39.7) | |
Progressive disease | 44 (60.3) | |
Specimen site | ||
Lung | 50 (68.5) | |
Metastatic sites | 23 (31.5) | |
Specimen type | ||
Biopsy | 40 (54.8) | |
Resection | 29 (39.7) | |
Cell block | 4 (5.5) | |
NGS panel | ||
ACTDrug (targeted) | 56 (76.7) | |
ACTOnco (comprehensive) | 17 (23.3) |
Case No. | % | |
---|---|---|
EGFR | 46 | 63 |
TP53 | 37 | 50.7 |
KRAS | 10 | 13.7 |
RB1 | 10 | 13.7 |
CDKN2A | 10 | 13.7 |
ERBB2 | 8 | 11 |
PIK3CA | 8 | 11 |
MET | 7 | 9.6 |
CDK4 | 6 | 8.2 |
EGFR | Non-EGFR | ||
---|---|---|---|
n (%) | n (%) | p Value | |
Level 1 and 2 | 0.016 | ||
Yes | 8 (20.1) | 16 (47.1) | |
No | 31 (79.9) | 18 (52.9) | |
Level 3 only | |||
Yes | 0 (0) | 1 (2.9) | 0.2425 |
No | 39 (100) | 33 (97.1) | |
Level 4 only | 0.9937 | ||
Yes | 8 (20.1) | 7 (20.1) | |
No | 31 (79.9) | 27 (79.9) |
Initial Diagnosis n (%) | Progressive Disease n (%) | p Value | |
---|---|---|---|
Level 1 and 2 | 0.0093 | ||
Yes | 0 (0) | 9 (20.5) | |
No | 29 (100) | 35 (79.5) | |
Level 3 only | NA | ||
Yes | 0 (0) | 0 (0) | |
No | 29 (100) | 44 (100) | |
Level 4 only | 0.9848 | ||
Yes | 4 (13.8) | 6 (13.6) | |
No | 25 (86.2) | 38 (86.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, W.-A.; Huang, Y.-S.; Chang, K.-C.; Yang, S.-F.; Yang, C.-J.; Liu, Y.-W.; Chen, H.-D. Next-Generation Sequencing in Lung Cancers—A Single-Center Experience in Taiwan. Medicina 2024, 60, 236. https://doi.org/10.3390/medicina60020236
Lai W-A, Huang Y-S, Chang K-C, Yang S-F, Yang C-J, Liu Y-W, Chen H-D. Next-Generation Sequencing in Lung Cancers—A Single-Center Experience in Taiwan. Medicina. 2024; 60(2):236. https://doi.org/10.3390/medicina60020236
Chicago/Turabian StyleLai, Wei-An, Yen-Shuo Huang, Kung-Chao Chang, Sheau-Fang Yang, Chih-Jen Yang, Yu-Wei Liu, and Huan-Da Chen. 2024. "Next-Generation Sequencing in Lung Cancers—A Single-Center Experience in Taiwan" Medicina 60, no. 2: 236. https://doi.org/10.3390/medicina60020236
APA StyleLai, W. -A., Huang, Y. -S., Chang, K. -C., Yang, S. -F., Yang, C. -J., Liu, Y. -W., & Chen, H. -D. (2024). Next-Generation Sequencing in Lung Cancers—A Single-Center Experience in Taiwan. Medicina, 60(2), 236. https://doi.org/10.3390/medicina60020236