Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing
Abstract
:1. Introduction
Background
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abt, E.; Carr, A.B.; Worthington, H.V. Interventions for replacing missing teeth: Partially absent dentition. Cochrane Database Syst. Rev. 2012, 2, CD003814. [Google Scholar] [CrossRef] [PubMed]
- Salinas, T.; Block, M.S.; Sadan, A. Fixed partial denture or single-tooth implant restoration? Statistical considerations for sequencing and treatment. J. Oral Maxillofac. Surg. 2004, 62, 2–16. [Google Scholar] [PubMed]
- Reitemeier, B.; Hänsel, K.; Kästner, C.; Weber, A.; Walter, M.H. A prospective 10-year study of metal ceramic single crowns and fixed dental prosthesis retainers in private practice set tings. J. Prosthet. Dent. 2013, 109, 149–155. [Google Scholar] [CrossRef]
- Limones, A.; Molinero-Mourelle, P.; Azevedo, L.; Romeo-Rubio, M.; Correia, A.; Gómez-Polo, M. Zirconia-ceramic vs. metal-ceramic multi-unit tooth-supported posterior fixed dental prosthesis: A systematic review and meta-analysis. J. Am. Dent. Assoc. 2020, 151, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Givens, E.J., Jr.; Neiva, G.; Yaman, P.; Dennison, J.B. Marginal adaptation and color stability of four provisional mate-rials. J. Prosthodont. 2008, 17, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svanborg, P. A systematic review on the accuracy of zirconia crowns and fixed dental prosthe-ses. Biomater. Investig. Dent. 2020, 7, 9–15. [Google Scholar] [PubMed] [Green Version]
- Rinke, S.; Fornefett, D.; Gersdorff, N.; Lange, K.; Roediger, M. Multifactorial analysis of the impact of differ-ent manufacturing processes on the marginal fit of zirconia copings. Dent. Mater. J. 2012, 31, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joda, T.; Ferrari, M.; Gallucci, G.O.; Wittneben, J.G.; Brägger, U. Digital technology in fixed implant prostho-dontics. Periodontology 2017, 73, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Meyer, M.J.; Özcan, M. Metal additive manufacturing technologies: Literature review of current status and prosthodontic applications. Int. J. Comput. Dent. 2019, 22, 55–67. [Google Scholar] [PubMed]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Wismeijer, D.; Osman, R. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review. Int. J. Prosthodont. 2017, 30, 474–484. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.W.; Von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and Reliability of Methods to Measure Marginal Adaptation of Crowns and FDPs: A Literature Review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef]
- Park, G.-S.; Kim, S.-K.; Heo, S.-J.; Koak, J.-Y.; Seo, D.-G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Matererials 2019, 12, 2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinero-Mourelle, P.; Canals, S.; Gomez-Polo, M.; Sola-Ruiz, M.; Highsmith, J.D.R.; Viñuela, A. Polylactic Acid as a Material for Three-Dimensional Printing of Provisional Restorations. Int. J. Prosthodont. 2018, 31, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, N.; Alharbi, S.; Cuijpers, V.M.; Osman, R.B.; Wismeijer, D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J. Prosthodont. Res. 2018, 62, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.O.; Tsitrou, E.A.; Pollington, S. Comparative in vitro evaluation of CAD/CAM vs. conven-tional provisional crowns. J. Appl. Oral Sci. 2016, 24, 258–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, R.; Gonzalo, E.; Gomez-Polo, M.; Lopez-Suarez, C.; Suarez, M.J. SEM evaluation of the precision of fit of CAD/CAM zirconia and metal-ceramic posterior crowns. Dent. Mater. J. 2017, 36, 387–393. [Google Scholar] [CrossRef] [PubMed]
Measurements | N | Mean | Median | SD | Minimum | Maximum |
---|---|---|---|---|---|---|
Distal–buccal | 5 | 76.36 | 76.35 | 76.35 | 60.05 | 152.52 |
Distal–buccal | 5 | 41.05 | 22.5 | 41.51 | 7.5 | 105.03 |
Distal–buccal | 5 | 31.96 | 31.96 | 26.90 | 8.75 | 75.17 |
Distal–lingual | 5 | 62.49 | 62.49 | 26.06 | 37.83 | 100.12 |
Distal–lingual | 5 | 61.13 | 61.13 | 26.84 | 37.58 | 105.03 |
Distal–lingual | 5 | 29.5 | 29.5 | 15.61 | 13.46 | 52.74 |
Mesial–Buccal | 5 | 30.03 | 30.03 | 12.74 | 13.75 | 40.08 |
Mesial–Buccal | 5 | 22.65 | 22.65 | 7.47 | 15.21 | 35.09 |
Mesial–Buccal | 5 | 33.86 | 33.86 | 1.73 | 32.52 | 36.59 |
Mesial–lingual | 5 | 43.47 | 43.47 | 18.29 | 18.2 | 60.21 |
Mesial–lingual | 5 | 76.89 | 76.89 | 21.66 | 40.49 | 95.03 |
Mesial–lingual | 5 | 47.05 | 52.74 | 21.21 | 16.68 | 70.04 |
Total | 60 | 46.37 | 38.65 | 29.58 | 7.5 | 152.52 |
Characteristics | Value |
---|---|
Viscosity at 23 °C | 0.9–1.4 Pa s |
Bending strength | =85 MPa |
Bending e-module | =2100 MPa |
Shore hardness D | 80–90 |
Absorption of water | <30 μg/mm2 |
Water solubility | <5 μg/mm2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinero-Mourelle, P.; Gómez-Polo, M.; Gómez-Polo, C.; Ortega, R.; del Río Highsmith, J.; Celemín-Viñuela, A. Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis 2020, 2, 240-245. https://doi.org/10.3390/prosthesis2030021
Molinero-Mourelle P, Gómez-Polo M, Gómez-Polo C, Ortega R, del Río Highsmith J, Celemín-Viñuela A. Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis. 2020; 2(3):240-245. https://doi.org/10.3390/prosthesis2030021
Chicago/Turabian StyleMolinero-Mourelle, Pedro, Miguel Gómez-Polo, Cristina Gómez-Polo, Rocio Ortega, Jaime del Río Highsmith, and Alicia Celemín-Viñuela. 2020. "Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing" Prosthesis 2, no. 3: 240-245. https://doi.org/10.3390/prosthesis2030021
APA StyleMolinero-Mourelle, P., Gómez-Polo, M., Gómez-Polo, C., Ortega, R., del Río Highsmith, J., & Celemín-Viñuela, A. (2020). Preliminary Study on the Assessment of the Marginal Fit of Three-Dimensional Methacrylate Oligomer Phosphine Oxide Provisional Fixed Dental Prostheses Made by Digital Light Processing. Prosthesis, 2(3), 240-245. https://doi.org/10.3390/prosthesis2030021