A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India
Abstract
:1. Introduction
2. Neural Network Fusion Framework
3. Study Areas and Dataset Used
3.1. Study Area 1: Ghaziabad and Surrounding Region
3.2. Study Area 2: Dehradun and Surrounding Region
3.3. Dataset Used
4. Methodology
5. Results
5.1. Results for Neural Network-Based Fusion Approach in Ghaziabad and Surrounding Region
5.1.1. ANN Model in Keras
5.1.2. ANN Model in MATLAB NN-Toolbox
5.2. Results for Neural Network-Based Fusion Approach in Dehradun and Surrounding Region
5.2.1. ANN Model in Keras
5.2.2. ANN Model in MATLAB NN-Toolbox
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Miller, C.L.; Laflamme, R.A. The digital terrain model-Theory & Application. Am. Soc. Photogramm. 1958, XXIV, 11. [Google Scholar]
- Li, J.; Wong, D.W. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 2010, 34, 251–261. [Google Scholar] [CrossRef]
- Song, X.; Qi, Z.; Du, L.P.; Kou, C.L. The Influence of DEM Resolution on Hydrological Simulation in the Huangshui River Basin. Adv. Mater. Res. 2012, 518, 4299–4302. [Google Scholar] [CrossRef]
- Khojeh, S.; Ataie-Ashtiani, B.; Hosseini, S.M. Effect of DEM resolution in flood modeling: A case study of Gorganrood River, Northeastern Iran. Nat. Hazards 2022, 112, 2673–2693. [Google Scholar] [CrossRef]
- Louise, A.J.v.; Keiko, S.; Michel, M.; Don, M. Digital Elevation Models. 2007. Available online: http://hdl.handle.net/10986/34445 (accessed on 18 October 2021).
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; TayloCRC & FPrancies Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Monti-guarnieri, A.; Prati, C.; Rocca, F.; Massonnet, D. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation; European Space Agency: Paris, France, 2007. [Google Scholar]
- Michelle Sneed, “Interferometric Synthetic Aperture Radar (InSAR)”, USGS, Land Subsidence in California. 2018. Available online: https://www.usgs.gov/centers/ca-water-ls/science/interferometric-synthetic-aperture-radar-insar?qt-science_center_objects=0#qt-science_center_objects (accessed on 7 September 2021).
- Fukumori, I. Data Assimilation by Models. In International Geophysics; Academic Press: Cambridge, MA, USA, 2001; pp. 237–265. [Google Scholar]
- Kim, D.E.; Liong, S.-Y.; Gourbesville, P.; Andres, L.; Liu, J. Simple-Yet-Effective SRTM DEM Improvement Scheme for Dense Urban Cities Using ANN and Remote Sensing Data: Application to Flood Modeling. Water 2020, 12, 816. [Google Scholar] [CrossRef] [Green Version]
- Papasaika, H.; Poli, D.; Baltsavias, E. Fusion of Digital Elevation Models from Various Data Sources. In Proceedings of the 2009 International Conference on Advanced Geographic Information Systems & Web Services, Cancun, Mexico, 1–7 February 2009; pp. 117–122. [Google Scholar] [CrossRef]
- Fuss, C.E. Digital Elevation Model Generation and Fusion. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, 2013; p. 159. Available online: https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/7571/Fuss_Colleen_201309_Msc.pdf?sequence=3 (accessed on 21 October 2021).
- Papasaika, H.; Kokiopoulou, E.; Baltsavias, E.; Schindler, K.; Kressner, D. Fusion of Digital Elevation Models Using Sparse Representations. In ISPRS Conference on Photogrammetric Image Analysis; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6952, pp. 171–184. [Google Scholar] [CrossRef]
- Yousif, H.; Li, J.; Chapman, M.; Shu, Y. Accuracy Enhancement of Terrestrial Mobile LiDAR Data Using Theory of Assimilation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, XXXVIII, 639–645. [Google Scholar]
- Bhardwaj, A.; Jain, K.; Chatterjee, R.S. Generation of high-quality digital elevation models by assimilation of remote sensing-based DEMs. J. Appl. Remote Sens. 2019, 13, 044502. [Google Scholar] [CrossRef]
- Bagheri, H.; Schmitt, M.; Zhu, X.X. Fusion of TanDEM-X and Cartosat-1 elevation data supported by neural network-predicted weight maps. ISPRS J. Photogramm. Remote Sens. 2018, 144, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Girohi, P.; Bhardwaj, A. Improving SAR Interferometry based Digital Elevation Models using Successive Best Pixel Selection Approach for DEM fusion. In Abstract Booklet NSSS 2022; IISER Kolkata: Haringhata, India, 2022; p. 119. [Google Scholar]
- Kulp, S.A.; Strauss, B.H. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens. Environ. 2018, 206, 231–239. [Google Scholar] [CrossRef]
- Kampüs, K. Estimation of Unknown Height With Artificial Neural Network on Digital Terrain Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 115–118. Available online: http://www.isprs.org/congresses/beijing2008/proceedings/3b_pdf/21.pdf (accessed on 7 December 2021).
- Nguyen, N.S.; Kim, D.E.; Jia, Y.; Raghavan, S.V.; Liong, S.Y. Application of Multi-Channel Convolutional Neural Network to Improve DEM Data in Urban Cities. Technologies 2022, 10, 61. [Google Scholar] [CrossRef]
- Kim, D.; Liu, J.; Liong, S.-Y.; Gourbesville, P.; Strunz, G. Satellite DEM Improvement Using Multispectral Imagery and an Artificial Neural Network. Water 2021, 13, 1551. [Google Scholar] [CrossRef]
- Tian, X.; Shan, J. Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8195–8209. [Google Scholar] [CrossRef]
- Brown, M.E.; Arias, S.D.; Neumann, T.; Jasinski, M.F.; Posey, P.; Babonis, G.; Glenn, N.F.; Birkett, C.M.; Escobar, V.M.; Markus, T. Applications for ICESat-2 Data: From NASA’s Early Adopter Program. IEEE Geosci. Remote Sens. Mag. 2016, 4, 24–37. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, X.; Nie, S.; Xi, X.; Li, D.; Zheng, W.; Chen, S. Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA. Opt. Express 2019, 27, 38168–38179. [Google Scholar] [CrossRef]
- Zhang, Y.; Pang, Y.; Cui, D.; Ma, Y.; Chen, L. Accuracy Assessment of the ICESat-2/ATL06 Product in the Qilian Mountains Based on CORS and UAV Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1558–1571. [Google Scholar] [CrossRef]
- Bhardwaj, A. Investigating the Terrain Complexity from ATL06 ICESat-2 Data for Terrain Elevation and Its Use for Assessment of Openly Accessible InSAR Based DEMs in Parts of Himalaya’s. Eng. Proc. 2021, 10, 65. [Google Scholar] [CrossRef]
- Carabajal, C.C.; Harding, D.J. ICESat validation of SRTM C-band digital elevation models. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Goud, G.P.S.; Bhardwaj, A. Estimation of Building Heights and DEM Accuracy Assessment Using ICESat-2 Data Products. Eng. Proc. 2021, 10, 37. [Google Scholar] [CrossRef]
- Dandabathula, G.; Sitiraju, S.R.; Jha, C.S. Retrieval of building heights from ICESat-2 photon data and evaluation with field measurements. Environ. Res. Infrastruct. Sustain. 2021, 1, 011003. [Google Scholar] [CrossRef]
- Hu, Y.H.; Hwang, J.N. Handbook of Neural Network Signal Processing; Academic Press, Inc.: San Diego, NY, USA, 2001. [Google Scholar]
- Anderson, J.A. Introduction to Neural Networks, 8th ed.; MIT Press: Cambridge, MA, USA, 1994; Volume 6. [Google Scholar]
- Kanungo, D.; Arora, M.; Sarkar, S.; Gupta, R. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 2003, 24, 4907–4938. [Google Scholar] [CrossRef]
- Demuth, H.; Beale, M. Neural Network Toolbox Version4. In Networks; MathWorks: Portola Valley, CA, USA, 2002; Volume 24, No. 1, pp. 1–8. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.6691&rep=rep1&type=pdf (accessed on 2 January 2022).
- Braun, A. Retrieval of digital elevation models from Sentinel-1 radar data–open applications, techniques, and limitations. Open Geosci. 2021, 13, 532–569. [Google Scholar] [CrossRef]
- Toutin, T. Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 57, 228–240. [Google Scholar] [CrossRef]
- Riley, R.E.S.J.; De Gloria, S.D. Terrain Ruggedness Index- Riley.pdf. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 2001; Volume 64, pp. 227–245. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Topographic+Position+and+Landforms+Analysis#0 (accessed on 18 March 2022).
- Jenness, J. Topographic Position Index (tpi_jen.avx). 2006. Available online: http://www.jennessent.com/arcview/tpi.html (accessed on 20 March 2022).
- Sappington, J.M.; Longshore, K.M.; Thompson, D.B. Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert. J. Wildl. Manag. 2007, 71, 1419–1426. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Kumar, P.; Bhattacharya, B.K.; Pal, P. Impact of vegetation fraction from Indian geostationary satellite on short-range weather forecast. Agric. For. Meteorol. 2012, 168, 82–92. [Google Scholar] [CrossRef]
- Kirthiga, S.M.; Patel, N.R. Impact of updating land surface data on micrometeorological weather simulations from the WRF model. Atmosfera 2018, 31, 165–183. [Google Scholar] [CrossRef]
- Dolloff, J.; Carr, J. Computation of scalar accuracy metrics LE, CE, and SE as both predictive and sample-based statistics. In Proceedings of the ASPRS 2016 Annual Conference and Co-Located JACIE Workshop-Imaging Geospatial Technol. Forum Co-Located JACIE Work, Fort Worth, TX, USA, 11–15 April 2016; pp. 1–15. [Google Scholar]
Dataset | Specifications |
---|---|
1. Sentinel-1 A/1B | C-Band SAR sensor, Wavelength: 5.6 cm; Acquisition Modes: Strip Map: 5 × 5 m spatial resolution; Single-Look; Single and Dual polarized dataset. Interferometric Wide (IW): 5 × 20 m spatial resolution; 250 km swath; 3-looks; Single and Dual polarized data. Extra-Wide Swath (EW): 20 × 40 m spatial resolution; 400 km swath; Single-look; Single and Dual polarized data. Wavelength (WV): 5 × 20 m spatial resolution; 100 km swath; Single-look; Single polarization data. Data Format: SLC (Single Look Complex) products for interferometry GRD (Ground Range Detected Geo-referenced) products |
2. Sentinel-2A | Multi-spectral Sensor (MSI); Spectral resolution: 13 Bands (B01 to 08, 08A, 09 to 12); Field of View (FOV): 290 km; Temporal resolution: 10 days Spatial Resolution: 10 m (used in this study), 20 m and 60 m; Data Product used: Level 2A Orthorectified Bottom of Atmosphere reflectance product. |
3. ICESat-2 Spaceborne LiDAR data | Photon-based altimetry data; ATLAS (Advanced Topographic Laser Altimeter) instrument Wavelength: 532 nm; Coverage: 88° N to −88° S latitude; Six tracks of three pairs of beams from a single laser; Along track spacing: 0.7 m; Across-track spacing: 3.3 km (between three pairs) and 90 m (within each pair) Footprint Diameter: 17 m; Data Product used: ATL08- Land and Vegetation Height geodetic product. Projection System: WGS (World Geographic System)–1984 |
4. TanDEM-X 90 m DEM | X-Band SAR sensor; Wavelength: 0.35 cm; Spatial Resolution: 90 m (Openly Accessible Product); Projection system: WGS (World Geographic System)-84; Horizontal Accuracy: 10 m (90CE) Vertical Accuracy: 10 m (90LE) |
5. Survey of India (SOI) Toposheets referred | Ghaziabad and surrounding regions: H43X9, H43X10, H43X5, H43X2 Dehradun and surrounding regions: H43L11, H43L15, H43L16, H43G3, H43G4 |
NN Architecture (Input Layer-Hidden Layer1–Hidden Layer2–Output Layer) | Sigmoid Activation Function | ReLU Activation Function | Tanh Activation Function | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE (m) | MSE (m) | RMSE (m) | MAE (m) | MSE (m) | RMSE (m) | MAE (m) | MSE (m) | RMSE (m) | |
31-20-15-1 | 2.03 | 7.89 | 2.81 | 2.38 | 9.91 | 3.15 | 2.92 | 15.46 | 3.93 |
31-20-10-1 | 2.06 | 8.03 | 2.83 | 2.54 | 11.72 | 3.42 | 2.92 | 15.30 | 3.92 |
31-21-10-1 | 2.10 | 7.99 | 2.83 | 2.40 | 10.60 | 3.25 | 2.92 | 15.49 | 3.94 |
31-21-15-1 | 1.94 | 7.24 | 2.69 | 2.35 | 10.28 | 3.21 | 1.99 | 7.26 | 2.69 |
31-30-15-1 | 1.96 | 7.39 | 2.72 | 2.46 | 10.52 | 3.24 | 2.16 | 8.44 | 2.91 |
31-30-20-1 | 1.98 | 7.72 | 2.78 | 2.35 | 9.88 | 3.14 | 2.92 | 15.30 | 3.91 |
31-30-25-1 | 2.01 | 7.62 | 2.76 | 2.36 | 9.87 | 3.14 | 2.92 | 15.49 | 3.93 |
31-40-30-1 | 1.96 | 7.32 | 2.70 | 2.29 | 9.03 | 3.004 | 1.96 | 7.92 | 2.81 |
31-60-30-1 | 2.01 | 7.52 | 2.74 | 2.25 | 9.21 | 3.035 | 2.08 | 8.18 | 2.86 |
31-60-50-1 | 2.00 | 7.59 | 2.74 | 2.26 | 8.88 | 2.98 | 2.00 | 8.21 | 2.86 |
DEMs | RMSE (m) | LE90 (m) | Improvement Factor (%IF) for Keras Model | Improvement Factor (%IF) for MATLAB Model |
---|---|---|---|---|
DEM 1 | 12.03 | 19.78 | 71.24 | 63.92 |
DEM 3 | 28.85 | 47.45 | 88.01 | 84.96 |
DEM 6 | 31.93 | 52.52 | 89.16 | 86.41 |
DEM 7 | 24.39 | 40.12 | 85.81 | 82.20 |
DEM 8 | 64.64 | 106.33 | 94.65 | 93.28 |
ANN Prediction (Keras Model) | 3.46 | 5.69 | -- | -- |
ANN Prediction (MATLAB Model) | 4.34 | 7.14 | -- | -- |
NN Architecture (Input Layer–Hidden Layer1–Hidden Layer2–Output Layer) | Sigmoid Activation Function | ReLU Activation Function | Tanh Activation Function | ||||||
---|---|---|---|---|---|---|---|---|---|
MAE (m) | MSE (m) | RMSE (m) | MAE (m) | MSE (m) | RMSE (m) | MAE (m) | MSE (m) | RMSE (m) | |
31-60-50-1 | 6.06 | 118.84 | 10.90 | 6.14 | 76.92 | 8.77 | 7.03 | 188.35 | 13.72 |
31-64-32-1 | 7.75 | 307.54 | 17.54 | 7.40 | 109.30 | 10.45 | 7.58 | 282.17 | 16.80 |
31-64-50-1 | 6.21 | 120.49 | 10.98 | 7.42 | 112.40 | 10.60 | 6.58 | 162.25 | 12.74 |
31-64-120-1 | 6.33 | 92.27 | 9.61 | 6.96 | 95.24 | 9.76 | 5.86 | 92.10 | 9.60 |
31-64-128-1 | 6.77 | 88.62 | 9.41 | 5.83 | 70.04 | 8.37 | 5.53 | 83.66 | 9.15 |
DEMs | RMSE (m) | LE90 (m) | Improvement Factor (%IF) |
---|---|---|---|
DEM 1 | 51.91 | 85.38 | 78.91 |
DEM 2 | 20.41 | 33.57 | 46.35 |
DEM 3 | 63.02 | 103.66 | 82.62 |
DEM 4 | 26.05 | 42.85 | 57.96 |
DEM 5 | 17.23 | 28.34 | 36.45 |
ANN Prediction (MATLAB model) | 10.95 | 18.01 | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girohi, P.; Bhardwaj, A. A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India. AI 2022, 3, 820-843. https://doi.org/10.3390/ai3040050
Girohi P, Bhardwaj A. A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India. AI. 2022; 3(4):820-843. https://doi.org/10.3390/ai3040050
Chicago/Turabian StyleGirohi, Priti, and Ashutosh Bhardwaj. 2022. "A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India" AI 3, no. 4: 820-843. https://doi.org/10.3390/ai3040050