Ethics and Transparency Issues in Digital Platforms: An Overview
Abstract
:1. Introduction
- Lack of transparency with regard to who contributes to platforms.
- Lack of transparency with regard to who is working behind platforms, the contributions of those workers, and the working conditions of digital workers.
- Lack of transparency with regard to how algorithms are developed and governed.
2. Reflecting on the Concept
2.1. Digital Platforms
2.2. Governance of Platforms
2.3. Governance by Platforms
2.4. AI and Ethics in the Context of Digital Platforms
2.5. AI Ethics and Transparency
3. Zones of Non-Transparency in Platforms
3.1. Non-Transparency on Who Contributes to Platforms
- Main platform workers work more than 20 h per week or earn 50% or more of their income via digital platform work.
- Secondary platform workers work more than 10 h per week or earn 25–50% of their income via digital platform work.
- Marginal platform workers work less than 10 h per week or earn 25% or less of their income via digital platform work.
3.2. Non-Transparency on Contributions of Workers and Their Work Conditions
3.3. Non-Transparency on How Algorithms Are Developed
4. Conclusions
4.1. Identify Contributors
4.2. Identify Governance/Self-Governance
4.3. Identify Datasets and Explanation of Decisions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nieborg, D.B.; Poell, T. The platformization of cultural production: Theorizing the contingent cultural commodity. New Media Soc. 2018, 20, 4275–4292. [Google Scholar] [CrossRef]
- Juris, J.S. Reflections on #Occupy Everywhere: Social media, public space, and emerging logics of aggregation. Am. Ethnol. 2012, 39, 259–279. [Google Scholar]
- Tremayne, M. Anatomy of protest in the digital era: A network analysis of Twitter and Occupy Wall Street. Soc. Mov. Stud. 2014, 13, 110–126. [Google Scholar] [CrossRef]
- Rane, H.; Salem, S. Social media, social movements and the diffusion of ideas in the Arab uprisings. J. Int. Commun. 2012, 18, 97–111. [Google Scholar] [CrossRef]
- Ghannam, J. Social Media in the Arab World: Leading Up to the Uprisings of 2011; Center for International Media Assistance: Washington, DC, USA, 2011; Volume 3, pp. 1–44. [Google Scholar]
- Allcott, H.; Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspect. 2017, 31, 211–236. [Google Scholar] [CrossRef]
- Gorwa, R.; Ash, T.G. Democratic transparency in the platform society. In Social Media and Democracy: The State of the Field, Prospects for Reform; Tucker, J.A., Persily, N., Eds.; Cambridge University Press: Cambridge, UK, 2020; pp. 286–312. [Google Scholar]
- Stevenson, A. Facebook Admits It Was Used to Incite Violence in Myanmar. 2018. Available online: https://www.nytimes.com/2018/11/06/technology/myanmar-facebook.html (accessed on 25 September 2023).
- Gorwa, R.; Binns, R.; Katzenbach, C. Algorithmic content moderation: Technical and political challenges in the automation of platform governance. Big Data Soc. 2020, 7, 2053951719897945. [Google Scholar] [CrossRef]
- Leone de Castris, A. Types of Platform Transparency: An Analysis of Digital Platforms and Policymakers Discourse on Big Tech Governance and Transparency; University of Chicago: Chicago, IL, USA, 2022. [Google Scholar]
- Chouldechova, A.; Roth, A. A snapshot of the frontiers of fairness in machine learning. Commun. ACM 2020, 63, 82–89. [Google Scholar] [CrossRef]
- Khalil, A.; Ahmed, S.G.; Khattak, A.M.; Al-Qirim, N. Investigating Bias in Facial Analysis Systems: A Systematic Review. IEEE Access 2020, 8, 130751–130761. [Google Scholar] [CrossRef]
- Hagendorff, T. The Ethics of AI Ethics: An Evaluation of Guidelines. Minds Mach. 2020, 30, 99–120. [Google Scholar] [CrossRef]
- Crawford, K.; Dobbe, R.; Dryer, T.; Fried, G.; Green, B.; Kaziunas, E.; Kak, A.; Mathur, V.; McElroy, E.; Sánchez, A.N. AI Now 2019 Report; AI Now Institute: New York, NY, USA, 2019. [Google Scholar]
- Mittelstadt, B. Principles alone cannot guarantee ethical AI. Nat. Mach. Intell. 2019, 1, 501–507. [Google Scholar] [CrossRef]
- Van Alstyne, M.W.; Parker, G.G.; Choudary, S.P. Pipelines, platforms, and the new rules of strategy. Harv. Bus. Rev. 2016, 94, 54–62. [Google Scholar]
- Nishikawa, B.T.; Orsato, R.J. Professional services in the age of platforms: Towards an analytical framework. Technol. Forecast. Soc. Chang. 2021, 173, 121131. [Google Scholar] [CrossRef]
- Chen, Y.; Richter, J.I.; Patel, P.C. Decentralized Governance of Digital Platforms. J. Manag. 2020, 47, 1305–1337. [Google Scholar] [CrossRef]
- Asadullah, A.; Faik, I.; Kankanhalli, A. Digital Platforms: A Review and Future Directions. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS), Yokohama, Japan, 26–30 June 2018; pp. 1–14. [Google Scholar]
- Tapscott, D.; Williams, A.D. Wikinomics: How Mass Collaboration Changes Everything; Penguin: London, UK, 2006. [Google Scholar]
- Duguay, S. “Running the Numbers”: Modes of Microcelebrity Labor in Queer Women’s Self-Representation on Instagram and Vine. Soc. Media+ Soc. 2019, 5, 1–11. [Google Scholar] [CrossRef]
- Gillespie, T. Governance of and by platforms. In The SAGE Handbook of Social Media; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2017; pp. 254–278. [Google Scholar]
- U.S.C. § 230. Communications Decency Act. 1996. Available online: https://libguides.uakron.edu/c.php?g=627783&p=5861337 (accessed on 25 September 2023).
- McKnelly, M. Untangling SESTA/FOSTA: How the Internet’s ‘Knowledge’ Threatens Anti-Sex Trafficking Law. Berkeley Technol. Law J. 2019, 34, 1239. [Google Scholar] [CrossRef]
- Daub, A. What Tech Calls Thinking: An Inquiry into the Intellectual Bedrock of Silicon Valley; FSG Originals: New York, NY, USA, 2020. [Google Scholar]
- Gol, E.S.; Stein, M.-K.; Avital, M. Crowdwork platform governance toward organizational value creation. J. Strateg. Inf. Syst. 2019, 28, 175–195. [Google Scholar]
- Hein, A.; Schreieck, M.; Wiesche, M.; Krcmar, H. Multiple-case analysis on governance mechanisms of multi-sided platforms. In Proceedings of Multikonferenz Wirtschaftsinformatik; Universitätsverlag Ilmenau: Ilmenau, Germany, 2016. [Google Scholar]
- Greene, D.; Hoffmann, A.L.; Stark, L. Better, Nicer, Clearer, Fairer: A Critical Assessment of the Movement for Ethical Artificial Intelligence and Machine Learning. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, HI, USA, 8–11 January 2019. [Google Scholar]
- Larsson, S.; Heintz, F. Transparency in artificial intelligence. Internet Policy Rev. 2020, 9. [Google Scholar] [CrossRef]
- Whittlestone, J.; Nyrup, R.; Alexandrova, A.; Cave, S. The role and limits of principles in AI ethics: Towards a focus on tensions. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019. [Google Scholar]
- Legg, S.; Hutter, M. A collection of definitions of intelligence. Front. Artif. Intell. Appl. 2007, 157, 17. [Google Scholar]
- Samoili, S.; Cobo, M.L.; Gomez, E.; De Prato, G.; Martinez-Plumed, F.; Delipetrev, B. AI Watch. Defining Artificial Intelligence. Towards an Operational Definition and Taxonomy of Artificial Intelligence; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Borenstein, J.; Grodzinsky, F.S.; Howard, A.; Miller, K.W.; Wolf, M.J. AI Ethics: A Long History and a Recent Burst of Attention. Computer 2021, 54, 96–102. [Google Scholar] [CrossRef]
- HLEG. A Definition of AI: Main Capabilities and Disciplines; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Mucha, T.; Seppala, T. Artificial Intelligence Platforms—A New Research Agenda for Digital Platform Economy; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Suzor, N.; Van Geelen, T.; Myers West, S. Evaluating the legitimacy of platform governance: A review of research and a shared research agenda. Int. Commun. Gaz. 2018, 80, 385–400. [Google Scholar] [CrossRef]
- Deng, X.; Joshi, K.D.; Galliers, R.D. The Duality of empowerment and marginalization in microtask crowdsourcing. MIS Q. 2016, 40, 279–302. [Google Scholar] [CrossRef]
- Urzì Brancati, M.C.; Pesole, A.; Fernandez-Macias, E. New Evidence on Platform Workers in Europe: Results from the Second COLLEEM Survey; Joint Research Centre (Seville site): Sevilla, Spain, 2020. [Google Scholar]
- O’Farrell, R.; Montagnier, P. Measuring digital platform-mediated workers. New Technol. Work Employ. 2020, 35, 130–144. [Google Scholar] [CrossRef]
- Lecher, C. How Amazon Automatically Tracks and Fires Warehouse Workers for ‘Productivity’. 2019. Available online: https://www.theverge.com/2019/4/25/18516004/amazon-warehouse-fulfillment-centers-productivity-firing-terminations (accessed on 25 September 2023).
- Roberts, S.T. Behind the Screen: Content Moderation in the Shadows of Social Media; Yale University Press: New Haven, CT, USA, 2019. [Google Scholar]
- Ross, J.; Irani, L.; Silberman, M.S.; Zaldivar, A.; Tomlinson, B. Who are the crowdworkers? Shifting demographics in Mechanical Turk. In CHI’10 Extended Abstracts on Human Factors in Computing Systems; AMC: New York, NY, USA, 2010; pp. 2863–2872. [Google Scholar]
- Huws, U. Labor in the Global Digital Economy: The Cybertariat Comes of Age; NYU Press: New York, NY, USA, 2014. [Google Scholar]
- Marvit, M.Z. How Crowdworkers Became the Ghosts in the Digital Machine. 2014. Available online: https://www.thenation.com/article/archive/how-crowdworkers-became-ghosts-digital-machine/ (accessed on 25 September 2023).
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018. [Google Scholar]
- Ilicki, J. A Framework for Critically Assessing ChatGPT and Other Large Language Artificial Intelligence Model Applications in Health Care. Mayo Clin. Proc. Digit. Health 2023, 1, 185–188. [Google Scholar] [CrossRef]
- Angwin, J.; Larson, J. Bias in Criminal Risk Scores Is Mathematically Inevitable, Researchers Say. 2016. Available online: https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematically-inevitable-researchers-say#:~:text=Series%3A%20Machine%20Bias-,Bias%20in%20Criminal%20Risk%20Scores%20Is%20Mathematically%20Inevitable%2C%20Researchers%20Say,on%20the%20fairness%20of%20outcomes (accessed on 24 September 2022).
- Yapo, A.; Weiss, J. Ethical Implications of Bias in Machine Learning. In Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018. [Google Scholar]
- Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Golumbia, D. Do You Oppose Bad Technology, or Democracy? 2019. Available online: https://medium.com/@davidgolumbia/do-you-oppose-bad-technology-or-democracy-c8bab5e53b32 (accessed on 27 September 2022).
- MacCarthy, M. Transparency Recommendations for Regulatory Regimes of Digital Platforms; Centre for International Governance Innovation: Waterloo, ON, Canada, 2022. [Google Scholar]
- Krijger, J. Enter the metrics: Critical theory and organizational operationalization of AI ethics. AI Soc. 2022, 37, 1427–1437. [Google Scholar] [CrossRef]
- Kocurek, C.A. Night Trap: Moral Panic. In How to Play Video Games; New York University Press: New York, NY, USA, 2019; pp. 309–316. [Google Scholar]
- Laczniak, R.N.; Carlson, L.; Walker, D.; Brocato, E.D. Parental restrictive mediation and children’s violent video game play: The effectiveness of the Entertainment Software Rating Board (ESRB) rating system. J. Public Policy Mark. 2017, 36, 70–78. [Google Scholar] [CrossRef]
- Federer, L.M.; Belter, C.W.; Joubert, D.J.; Livinski, A.; Lu, Y.-L.; Snyders, L.N.; Thompson, H. Data sharing in PLOS ONE: An analysis of Data Availability Statements. PLoS ONE 2018, 13, e0194768. [Google Scholar] [CrossRef]
- Gherghina, S.; Katsanidou, A. Data Availability in Political Science Journals. Eur. Political Sci. 2013, 12, 333–349. [Google Scholar] [CrossRef]
- Hardwicke, T.E.; Mathur, M.B.; MacDonald, K.; Nilsonne, G.; Banks, G.C.; Kidwell, M.C.; Hofelich Mohr, A.; Clayton, E.; Yoon, E.J.; Henry Tessler, M. Data availability, reusability, and analytic reproducibility: Evaluating the impact of a mandatory open data policy at the journal Cognition. R. Soc. Open Sci. 2018, 5, 180448. [Google Scholar] [CrossRef]
- Gunning, D. Broad Agency Announcement Explainable Artificial Intelligence (XAI); Technical report; Defense Advanced Research Projects Agency (DARPA): Arlington, TX, USA, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirghaderi, L.; Sziron, M.; Hildt, E. Ethics and Transparency Issues in Digital Platforms: An Overview. AI 2023, 4, 831-843. https://doi.org/10.3390/ai4040042
Mirghaderi L, Sziron M, Hildt E. Ethics and Transparency Issues in Digital Platforms: An Overview. AI. 2023; 4(4):831-843. https://doi.org/10.3390/ai4040042
Chicago/Turabian StyleMirghaderi, Leilasadat, Monika Sziron, and Elisabeth Hildt. 2023. "Ethics and Transparency Issues in Digital Platforms: An Overview" AI 4, no. 4: 831-843. https://doi.org/10.3390/ai4040042
APA StyleMirghaderi, L., Sziron, M., & Hildt, E. (2023). Ethics and Transparency Issues in Digital Platforms: An Overview. AI, 4(4), 831-843. https://doi.org/10.3390/ai4040042