NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data Collection
2.2. Native Sparse Attention (NSA) Algorithm
2.3. Chen-Guan (CHG) Algorithm Establishment
2.3.1. Kernel Function Optimization
2.3.2. RBF Radial Basis Function Optimization
2.3.3. Posterior Optimization of the CHG Algorithm
3. Model Establishment
3.1. Original Data Optimization
3.2. Tunnel Boring Geological Reconstruction
3.3. Training and Output Augmentation
3.4. PFC Enhancement Analysis
3.5. Model Evaluation
4. Model Validation
5. Conclusions
5.1. Validation of Research Assumptions
5.2. Parameter Impact Analysis
5.3. Research Limitations
5.4. Future Research Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Maslennikov, V.; Kalinina, I.; Mudrak, S.A. Foresight of modern urban infrastructure. In Proceedings of the International Science Conference SPbWOSCE—SMART City, Peter Great Saint Petersburg Polytechn Univ, Inst Civil Engn, St. Petersburg, Russia, 15–17 November 2016. [Google Scholar]
- Diaz, D.; Bai, Y.; Chen, J.X. Integrated Sustainable Underground Space Development. In Proceedings of the International Conference on Sustainable Infrastructure—Policy, Finance, and Education, New York, NY, USA, 26–28 October 2017; pp. 211–222. [Google Scholar]
- Hanamura, T. Underground space networks in the 21st century: New infrastructure with modal shift technology and geotechnology. In Proceedings of the International Symposium on Modern Tunneling Science and Technology, Kyoto, Japan, 30 October–1 November 2001; pp. 55–65. [Google Scholar]
- Kaliampakos, D.; Benardos, A. Underground space development: Setting modern strategies. In Proceedings of the 1st International Conference on Underground Spaces—Design, Engineering and Environmental Aspects, Wessex Inst Technol, New Forest, UK, 8–10 September 2008; pp. 1–10. [Google Scholar]
- Li, X.; Li, H.B.; Du, S.Z.; Jing, L.J.; Li, P.Y. Cross-project utilisation of tunnel boring machine (TBM) construction data: A case study using big data from Yin-Song diversion project in China. Georisk-Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 127–147. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Bal, C.; Aladag, C.H. Modeling of Tunnel Boring Machine Performance Employing Random Forest Algorithm. Geotech. Geol. Eng. 2023, 41, 4205–4231. [Google Scholar] [CrossRef]
- Shi, J.G.; Yang, Z.H.; Li, G.S.; Qiu, Z.L.; Mu, Z.J.; Sun, Z.W.; Zhao, K.; Yan, J.N. Investigations on optimal parameters for enhancing penetration efficiency during axial-torsional coupled impact drilling in hard rock. Geoenergy Sci. Eng. 2025, 247, 213668. [Google Scholar] [CrossRef]
- Jalakani, R.; Moradi, S.S.T.; Morenov, V. ReliabilityAnalysis of a Drilling Bit Penetration Model in Oil and Gas Wells: A Case Study. Int. J. Eng. 2024, 37, 2213–2222. [Google Scholar] [CrossRef]
- Wennmohs, K.H. The Conventional tunnelling excavation a universal excavation method for different rock formations. In Proceedings of the 11th International Conference on Underground Construction Prague 2010, Prague, Czech Republic, 14–16 June 2010; pp. 355–357. [Google Scholar]
- Carrera, E.; Ballacchino, G.; Fries, T.; Ackermann, T. Second tube of the Gotthard Road Tunnel: Tunnel design and challenges after 2 years of construction of the preparatory works. In Proceedings of the ITA-AITES World Tunnel Congress (WTC)/49th General Assembly of the International-Tunnelling-and-Underground-Space-Association (ITA-AITES), Athens, Greece, 12–18 May 2023; pp. 494–502. [Google Scholar]
- Tan, B.T.; Van Weele, B. Design and construction of sewer tunnels under the deep tunnel sewerage system. In Proceedings of the International Conference on Tunnels and Underground Structures, Singapore, 26–29 November 2000; pp. 235–240. [Google Scholar]
- Feng, A.L.; Zhu, Z.Y.; Zhu, X.D.; Zhang, Q.; Yan, F.L.; Li, Z.J.; Guo, Y.W.; Singh, V.P.; Zhang, K.W.; Wang, G. Impacts of Water Diversion Projects on Vegetation Coverage in Central Yunnan Province, China (2017–2022). Remote Sens. 2024, 16, 2373. [Google Scholar] [CrossRef]
- Kong, F.C.; Lu, D.C.; Ma, Y.D.; Li, J.L.; Tian, T. Analysis and Intelligent Prediction for Displacement of Stratum and Tunnel Lining by Shield Tunnel Excavation in Complex Geological Conditions: A Case Study. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22206–22216. [Google Scholar] [CrossRef]
- An, P.Z.; Jia, B.X.; Meng, F.L.; Wang, Z.X.; Wei, H.L.; Zhang, Y.H. Forecast of Ground Deformation Caused by Tunnel Excavation Based on Intelligent Neural Network Model. Mob. Inf. Syst. 2022, 2022, 2924093. [Google Scholar] [CrossRef]
- Fu, K.; Qiu, D.H.; Xue, Y.G.; Zhang, W.Q.; Shao, T. Optimization of TBM Tunneling Parameters for Deep Buried Tunnel Based on Rock Cluster Grading and Strata Intelligent Identification. Rock Mech. Rock Eng. 2025, 58, 2607–2633. [Google Scholar] [CrossRef]
- Jiang, S.J.; Sweet, L.B.; Blougouras, G.; Brenning, A.; Li, W.T.; Reichstein, M.; Denzler, J.; Wei, S.G.; Yu, G.; Huang, F.N.; et al. How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences. Earths Future 2024, 12, e2024EF004540. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2019, 31, 1544–1554. [Google Scholar] [CrossRef]
- Liu, B.; Wang, J.W.; Wang, R.R.; Wang, Y.X.; Zhao, G.Z. Intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization. J. Rock Mech. Geotech. Eng. 2023, 15, 2842–2856. [Google Scholar] [CrossRef]
- Amoroso, C.; Maiello, E.; Iasiello, C. TBM machine parameters: From the empirical to the AI approaches. Gall. E Grandi Opere Sotter. 2022, 144, 39–44. [Google Scholar]
- Liu, Z.H.; Xu, X.; Qiao, P.; Li, D.S. Acceleration for Deep Reinforcement Learning using Parallel and Distributed Computing: A Survey. ACM Comput. Surv. 2025, 57, 1–35. [Google Scholar] [CrossRef]
- Thalagala, S.; Wong, P.K.; Wang, X.Z.; Sun, T.N. Broad Critic Deep Actor Reinforcement Learning for Continuous Control. IEEE Trans. Neural Netw. Learn. Syst. 2025; early access. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, W.; Xue, Y.; Lin, W.; Zhang, F. Model-based offline reinforcement learning framework for optimizing tunnel boring machine operation. Undergr. Space 2024, 19, 47–71. [Google Scholar] [CrossRef]
- Yin, X.; Liu, Q.S.; Huang, X.; Pan, Y.C. Perception model of surrounding rock geological conditions based on TBM operational big data and combined unsupervised-supervised learning. Tunn. Undergr. Space Technol. 2022, 120, 104285. [Google Scholar] [CrossRef]
- Liu, Z.B.; Li, L.; Fang, X.L.; Qi, W.B.; Shen, J.M.; Zhou, H.Y.; Zhang, Y.L. Hard-rock tunnel lithology prediction with TBM construction big data using a global-attention-mechanism-based LSTM network. Autom. Constr. 2021, 125, 103647. [Google Scholar] [CrossRef]
- Shan, F.; He, X.Z.; Armaghani, D.J.; Sheng, D.C. Effects of data smoothing and recurrent neural network (RNN) algorithms for real-time forecasting of tunnel boring machine (TBM) performance. J. Rock Mech. Geotech. Eng. 2024, 16, 1538–1551. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhu, Y.W.; Ma, R.; Du, C.X.; Du, S.L.; Shao, K.; Li, Q.B. Prediction Method of TBM Tunneling Parameters Based on PSO-Bi-LSTM Model. Front. Earth Sci. 2022, 10, 854807. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.G.; Zhu, S.L.; Armaghani, D.J.; Li, C.Q.; Nguyen, H.; Yagiz, S. Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Eng. Appl. Artif. Intell. 2021, 97, 104015. [Google Scholar] [CrossRef]
- Monthanopparat, N.; Tanchaisawat, T. Advancing Tunnel Boring Machine Performance Prediction in Massive and Highly Fractured Granite: Integrating Innovative Deep Learning and Block Model Techniques. Geotech. Eng. 2024, 55, 26–34. [Google Scholar]
- Soranzo, E.; Guardiani, C.; Wu, W. The application of reinforcement learning to NATM tunnel design. Undergr. Space 2022, 7, 990–1002. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Armaghani, D.J. Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr. Space 2022, 7, 833–846. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, F.; He, Q.; Guo, Y.A. A multi-swarm optimizer with a reinforcement learning mechanism for large-scale optimization. Swarm Evol. Comput. 2024, 86, 101486. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CL, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Yuan, J.; Gao, H.; Dai, D.; Luo, J.; Zhao, L.; Zhang, Z.; Xie, Z.; Wei, Y.X.; Wang, L.; Xiao, Z.; et al. Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention. arXiv 2025. [Google Scholar] [CrossRef]
- Gardner, J.R.; Pleiss, G.; Bindel, D.; Weinberger, K.Q.; Wilson, A.G. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 2–8 December 2018. [Google Scholar]
- Wang, Y.; Brubaker, M.; Chaib-Draa, B.; Urtasun, R. Sequential Inference for Deep Gaussian Process. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, 9–11 May 2016; pp. 694–703. [Google Scholar]
- Chen, H.; Zhou, Y.; Mei, K.H.; Wang, N.; Tang, M.D.; Cai, G.X. An Improved Density Peak Clustering Algorithm Based on Chebyshev Inequality and Differential Privacy. Appl. Sci. 2023, 13, 8674. [Google Scholar] [CrossRef]
- Rasht-Behesht, M.; Huber, C.; Shukla, K.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023120. [Google Scholar] [CrossRef]
- Anagnostopoulos, S.J.; Toscano, J.D.; Stergiopulos, N.; Karniadakis, G.E. Residual-based attention in physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 2024, 421, 116805. [Google Scholar] [CrossRef]
- Pei, C.Y.; Zhu, Z.X.; Wang, C.L.; Li, J.W.; Zhou, X.H.; Zhang, L.H.; Chen, Z.B. A Novel Method for Detecting Geological Anomalies in Tunnel Space Using Multiparameter Elastic Full Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5911622. [Google Scholar] [CrossRef]
- Ye, L.; Tao, Z.; Huang, Y.; Li, Y. ChunkAttention: Efficient Self-Attention with Prefix-Aware KV Cache and Two-Phase Partition. In Proceedings of the 62nd Annual Meeting of the Association-for-Computational-Linguistics (ACL)/Student Research Workshop (SRW), Bangkok, Thailand, 11–16 August 2024; pp. 11608–11620. [Google Scholar]
- Bae, S.H.; Lee, H.J.; Kim, H. Cache Compression with Golomb-Rice Code and Quantization for Convolutional Neural Networks. In Proceedings of the IEEE International Symposium on Circuits and Systems (IEEE ISCAS), Daegu, Republic of Korea, 22–28 May 2021. [Google Scholar]
- Xiao, G.; Tang, J.; Zuo, J.; Guo, J.; Yang, S.; Tang, H.; Fu, Y.; Han, S. DuoAttention: Efficient Long-Context LLM Inference with Retrieval and Streaming Heads. arXiv 2024. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; Li, G.; Shi, X.; Jin, Z. CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges. arXiv 2024. [Google Scholar] [CrossRef]
- Xue, Y.D.; Luo, W.; Chen, L.; Dong, H.X.; Shu, L.S.; Zhao, L. An intelligent method for TBM surrounding rock classification based on time series segmentation of rock-machine interaction data. Tunn. Undergr. Space Technol. 2023, 140, 105317. [Google Scholar] [CrossRef]
- Yang, Y.L.; Du, L.J.; Tang, R.; Wei, F.; Zhang, H.L. Prediction of TBM penetration rate for different surrounding rocks and cutter head diameters. Heliyon 2024, 10, e33174. [Google Scholar] [CrossRef]
- Grigoriu, M. A class of models for non-stationary Gaussian processes. Probabilistic Eng. Mech. 2003, 18, 203–213. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J. Neural network-aided simulation of non-Gaussian stochastic processes. Reliab. Eng. Syst. Saf. 2024, 242, 109786. [Google Scholar] [CrossRef]
- De Martino, A.; Diki, K. Gaussian RBF kernels via Fock spaces: Quaternionic and several complex variables settings. Quantum Stud. -Math. Found. 2024, 11, 69–85. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, Z.J.; Zhang, Y.M. A novel global RBF direct collocation method for solving partial differential equations with variable coefficients. Eng. Anal. Bound. Elem. 2024, 160, 14–27. [Google Scholar] [CrossRef]
- Arai, K. Design of On-Premises Version of RAG with AI Agent for Framework Selection Together with Dify and DSL as Well as Ollama for LLM. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 117–124. [Google Scholar] [CrossRef]
- Liu, S.H.; Lin, T.W.; He, D.L.; Li, F.; Wang, M.L.; Li, X.; Sun, Z.X.; Li, Q.; Ding, E.R. AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer. In Proceedings of the 18th IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 6629–6638. [Google Scholar]
- Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The Long-Document Transformer. arXiv 2020, arXiv:2004.05150. [Google Scholar]
- Zhou, Z.Q.; Sun, J.W.; Lai, Y.B.; Wei, C.C.; Hou, J.; Bai, S.S.; Huang, X.X.; Liu, H.L.; Xiong, K.Q.; Cheng, S. Study on size effect of jointed rock mass and influencing factors of the REV size based on the SRM method. Tunn. Undergr. Space Technol. 2022, 127, 104613. [Google Scholar] [CrossRef]
- Mendes, P.R., Jr.; Salavati, S.; Linares, O.; Gonçalves, M.M.; Zampieri, M.F.; Ferreira, V.H.D.; Castro, M.; Werneck, R.D.; Moura, R.; Morais, E.; et al. Rock-type classification: A (critical) machine-learning perspective. Comput. Geosci. 2024, 193, 105730. [Google Scholar] [CrossRef]
- Hatem, A.E.; Reitman, N.G.; Briggs, R.W.; Gold, R.D.; Jobe, J.A.T.; Burgette, R.J. Western US Geologic Deformation Model for Use in the US National Seismic Hazard Model 2023. Seismol. Res. Lett. 2022, 93, 3053–3067. [Google Scholar] [CrossRef]
- Muharliamov, R. On the equations of kinematics and dynamics of constrained mechanical systems. Multibody Syst. Dyn. 2001, 6, 17–28. [Google Scholar] [CrossRef]
- Xing, Y.; Xu, H.; Pei, S.Y.; Chen, X.L.; Liu, X.J. A novel non-Hertzian contact model of spherical roller bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2016, 230, 3–13. [Google Scholar] [CrossRef]
- Acharya, A.; Sengupta, A.N. Action principles for dissipative, non-holonomic Newtonian mechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2024, 480, 20240113. [Google Scholar] [CrossRef]
- van Riesen, D.; Kaehler, C.; Henneberger, G. Convergence behaviour of different formulations for time-harmonic and transient eddy-current computations in 3D. IEE Proc. Sci. Meas. Technol. 2004, 151, 434–439. [Google Scholar] [CrossRef]
- Zhang, H.M.; Shao, X.P.; Zhang, Z.F.; He, M.Y. E-PINN: Extended physics informed neural network for the forward and inverse problems of high-order nonlinear integro-differential equations. Int. J. Comput. Math. 2024, 101, 732–749. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhu, Y.W.; Du, C.X.; Du, S.L.; Shao, K.; Jin, Z.H. Dynamic Rock-Breaking Process of TBM Disc Cutters and Response Mechanism of Rock Mass Based on Discrete Element. Adv. Civ. Eng. 2022, 2022, 1917836. [Google Scholar] [CrossRef]
Geological Section | Mileage Range (m) | Recommended Construction Method | Risk Level |
---|---|---|---|
Soft Rock Area | 0–5 | Conventional TBM excavation, medium thrust and torque | Low |
Fractured Zone with Water Area | 5–10 | Cautious TBM excavation, enhanced ahead-of-face geological forecasting, pre-grouting treatment | High |
High In Situ Stress Zone | 10–35 | TBM high-thrust excavation, control excavation speed, prevent rock bursts | Medium |
Borehole ID | Chainage (m) | Borehole Depth (m) | Rock Mass Classification | RQD Value (%) | Uniaxial Compressive Strength (MPa) | Groundwater Level (m) | Major Geological Hazards |
---|---|---|---|---|---|---|---|
ZK-01 | 1.5 | 25 | III | 65–75 | 35–45 | Not detected | None |
ZK-02 | 3.8 | 28 | III | 60–70 | 40–50 | Not detected | Developed joints |
ZK-03 | 6.2 | 30 | IV | 30–40 | 15–25 | 5.5 | Developed fissures, water-bearing |
ZK-04 | 8.5 | 32 | V | 10–20 | 5–15 | 4.2 | Fault, water-rich |
ZK-05 | 12.0 | 35 | II | 75–85 | 80–100 | Not detected | High in situ stress |
ZK-06 | 18.5 | 38 | II | 80–90 | 90–110 | Not detected | High in situ stress |
ZK-07 | 24.0 | 40 | II | 75–85 | 85–105 | Not detected | High in situ stress |
ZK-08 | 30.5 | 38 | II | 75–85 | 80–100 | Not detected | High in situ stress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Guan, W.; Azzam, R.; Chen, S. NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions. AI 2025, 6, 127. https://doi.org/10.3390/ai6060127
Chen Y, Guan W, Azzam R, Chen S. NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions. AI. 2025; 6(6):127. https://doi.org/10.3390/ai6060127
Chicago/Turabian StyleChen, Youliang, Wencan Guan, Rafig Azzam, and Siyu Chen. 2025. "NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions" AI 6, no. 6: 127. https://doi.org/10.3390/ai6060127
APA StyleChen, Y., Guan, W., Azzam, R., & Chen, S. (2025). NSA-CHG: An Intelligent Prediction Framework for Real-Time TBM Parameter Optimization in Complex Geological Conditions. AI, 6(6), 127. https://doi.org/10.3390/ai6060127