Analysis of Decoherence in Linear and Cyclic Quantum Walks
Abstract
:1. Introduction
2. Quantum Walk on a Line
3. Modeling Decohrence on One Dimensional QWs
3.1. Localized Initial State
3.2. Delocalized Initial State
4. Decoherence Models
4.1. Model 1
4.2. Model 2
5. Position Probability Distribution
5.1. Model 1 with Localized Initial State (M1L)
5.2. Model 1 with Delocalized Initial State (M1D)
5.3. Model 2 with Localized Initial State (M2L)
5.4. Model 2 with Delocalized Initial State (M2D)
6. QW on a Cyclic Path
7. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kempe, J. Quantum random walks: An introductory overview. Contemp. Phys 2003, 44, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Shenvi, N.; Kempe, J.; Whaley, K.B. Quantum random-walk search algorithm. Phys. Rev. A 2003, 67, 052307. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M.; Cleve, R.; Deotto, E.; Farhi, E.; Gutmann, S.; Spielman, D.A. Exponential algorithmic speedup by a quantum walk. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, USA, 9–11 June 2003; Association for Computing Machinery: New York, NY, USA. [Google Scholar]
- Berry, S.D.; Wang, J.B. Quantum-walk-based search and centrality. Phys. Rev. A 2010, 82, 042333. [Google Scholar] [CrossRef] [Green Version]
- Childs, A.M. Universal computation by quantum walk. Phys. Rev. Lett. 2009, 102, 180501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, A.M.; Gosset, D.; Webb, Z. Universal computation by multiparticle quantum walk. Science 2013, 339, 791–794. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S. Quantum coherence in biological systems. J. Phys. Conf. Ser. 2011, 302, 012037. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Portugal, R.; Donangelo, R. Decoherence in two-dimensional quantum walks. Phys. Rev. A 2006, 74, 012312. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, S.; Sarovar, M.; Whaley, K.B. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 2010, 12, 065041. [Google Scholar] [CrossRef]
- Wójcik, A.; Łuczak, T.; Kurzyński, P.; Grudka, A.; Gdala, T.; Bednarska-Bzdęga, M. Trapping a particle of a quantum walk on the line. Phys. Rev. A 2012, 85, 012329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xue, P.; Twamley, J. One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 2014, 89, 042317. [Google Scholar] [CrossRef]
- Schreiber, A.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Jex, I.; Silberhorn, C. Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 2011, 106, 180403. [Google Scholar] [CrossRef] [Green Version]
- Crespi, A. Localization properties of two-photon wave packets. Nat. Photonics 2013, 7, 322–328. [Google Scholar] [CrossRef]
- Xue, P.; Qin, H.; Tang, B. Trapping photons on the line: Controllable dynamics of a quantum walk. Sci. Rep. 2014, 4, 4825. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, T.; Rudner, M.S.; Berg, E.; Demler, E. Exploring topological phases with quantum walks. Phys. Rev. A 2010, 82, 033429. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, T.; Broome, M.A.; Fedrizzi, A.; Rudner, M.S.; Berg, E.; Kassal, I.; White, A.G. Observation of topologically protected bound states in photonic quantum walks. Nat. Commun. 2012, 3, 1872. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.D.; Bartlett, S.D.; Stephenson, L.T.; Sanders, B.C. Quantum walks in higher dimensions. J. Phys. A 2002, 35, 2745. [Google Scholar] [CrossRef] [Green Version]
- Dur, W.; Raussendorf, R.; Kendon, V.M.; Briegel, H.J. Quantum walks in optical lattices. Phys. Rev. A 2002, 66, 052319. [Google Scholar] [CrossRef] [Green Version]
- Kendon, V.; Tregenna, B. Decoherence in a quantum walk on a line. In Proceedings of the 6th International Conference on Quantum Communication, Measurement and Computing, Cambridge, MA, USA, 23–26 July 2002. [Google Scholar]
- Kendon, V.; Tregenna, B. Decoherence can be useful in quantum walks. Phys. Rev. A 2003, 67, 042315. [Google Scholar] [CrossRef] [Green Version]
- Brun, T.A.; Carteret, H.A.; Ambainis, A. Quantum-to-classical transition for random walks. Phys. Rev. Lett. 2003, 91, 130602. [Google Scholar] [CrossRef] [Green Version]
- Brun, T.A.; Carteret, H.A.; Ambainis, A. Quantum walks driven by many coins. Phys. Rev. A 2003, 67, 052317. [Google Scholar] [CrossRef] [Green Version]
- Brun, T.A.; Carteret, H.A.; Ambainis, A. Quantum random walks with decoherent coins. Phys. Rev. A 2003, 67, 032304. [Google Scholar] [CrossRef] [Green Version]
- Shapira, D.; Biham, O.; Bracken, A.J.; Hackett, M. One-dimensional quantum walk with unitary noise. Phys. Rev. A 2003, 68, 062315. [Google Scholar] [CrossRef] [Green Version]
- López, C.C.; Paz, J.P. Phase-space approach to the study of decoherence in quantum walks. Phys. Rev. A 2003, 68, 052305. [Google Scholar] [CrossRef] [Green Version]
- Konno, N. A path integral approach for disordered quantum walks in one dimension. Fluct. Noise Lett. 2005, 5, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Kendon, V.; Sanders, B.C. Complementarity and quantum walks. Phys. Rev. A 2005, 71, 022307. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Manouchehri, K. Physical Implementation of Quantum Walks, 1st ed.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Romanelli, A.; Siri, R.; Abal, G.; Auyuanet, A.; Donangelo, R. Decoherence in the quantum walk on the line. Phys. A 2005, 347, 137. [Google Scholar] [CrossRef] [Green Version]
- Kosik, J.; Buzek, V.; Hillery, M. Quantum walks with random phase shifts. Phys. Rev. A 2006, 74, 022310. [Google Scholar] [CrossRef] [Green Version]
- Kendon, V. Decoherence in quantum walks-a review. Math. Struct. Comput. Sci. 2007, 17, 1169. [Google Scholar] [CrossRef] [Green Version]
- Gönülol, M.; Aydiner, E.; Müstecaplıoğlu, Ö.E. Decoherence in two-dimensional quantum random walks with traps. Phys. Rev. A 2009, 80, 022336. [Google Scholar] [CrossRef] [Green Version]
- Annabestani, M.; Akhtarshenas, S.J.; Abolhassani, M.R. Decoherence in a one-dimensional quantum walk. Phys. Rev. A 2010, 81, 032321. [Google Scholar] [CrossRef] [Green Version]
- Montero, M. Classical-like behavior in quantum walks with inhomogeneous, time-dependent coin operators. Phys. Rev. A 2016, 93, 062316. [Google Scholar] [CrossRef] [Green Version]
- Hizak, J.; Logozar, R. A derivation of the mean absolute distance in one-dimensional random walk. Teh. Glas. 2011, 5, 10–16. [Google Scholar]
- Alberti, A.; Alt, W.; Werner, R.; Meschede, D. Decoherence models for discrete-time quantum walks and their application to neutral atom experiments. New J. Phys. 2014, 16, 123052. [Google Scholar] [CrossRef] [Green Version]
- Ahlbrecht, A.; Cedzich, C.; Matjeschk, R.; Scholz, V.B.; Werner, A.H.; Werner, R.F. Asymptotic behavior of quantum walks with spatio-temporal coin fluctuations. Quantum Inf. Process 2012, 11, 1219–1249. [Google Scholar] [CrossRef] [Green Version]
- Perets, H.; Lahini, Y.; Pozzi, F.; Sorel, M.; Morandotti, R.; Silberberg, Y. Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 2008, 100, 170506. [Google Scholar] [CrossRef] [Green Version]
- Broome, M.A.; Fedrizzi, A.; Lanyon, B.P.; Kassal, I.; Aspuru-Guzik, A.; White, A.G. Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 2010, 104, 153602. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Cassemiro, K.N.; Potoček, V.; Gábris, A.; Jex, I.; Silberhorn, C. Higher winding number in a nonunitary photonic quantum walk. Phys. Rev. A 2018, 98, 063847. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information, 10th ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hou, L.-Z.; Fang, M.-F. Entanglement-assisted classical capacity of a generalized amplitude damping channel. Chin. Phys. Lett. 2007, 24, 2482. [Google Scholar]
- Preskill, J. Lecture Notes for Physics 229: Quantum Information and Computation; California Institute of Technology: Pasadena, CA, USA, 1998. [Google Scholar]
- Boyadzhiev, M.N. Notes on the Binomial Transform: Theory and Table with Appendix on Stirling Transform; World Scientific: Singapore, 2018. [Google Scholar]
- Sun, Z.H. Invariant sequences under binomial transformation. Fibonacci Quart. 2001, 29, 324–333. [Google Scholar]
- Nejadsattari, F.; Zhang, Y.; Bouchard, F.; Larocque, H.; Sit, A.; Cohen, E.; Fickler, R.; Karimi, E. Experimental realization of wave-packet dynamics in cyclic quantum walks. Optica 2019, 6, 174–180. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayakody, M.N.; Nanayakkara, A.; Cohen, E. Analysis of Decoherence in Linear and Cyclic Quantum Walks. Optics 2021, 2, 236-250. https://doi.org/10.3390/opt2040022
Jayakody MN, Nanayakkara A, Cohen E. Analysis of Decoherence in Linear and Cyclic Quantum Walks. Optics. 2021; 2(4):236-250. https://doi.org/10.3390/opt2040022
Chicago/Turabian StyleJayakody, Mahesh N., Asiri Nanayakkara, and Eliahu Cohen. 2021. "Analysis of Decoherence in Linear and Cyclic Quantum Walks" Optics 2, no. 4: 236-250. https://doi.org/10.3390/opt2040022
APA StyleJayakody, M. N., Nanayakkara, A., & Cohen, E. (2021). Analysis of Decoherence in Linear and Cyclic Quantum Walks. Optics, 2(4), 236-250. https://doi.org/10.3390/opt2040022