Phase Retrieval of One-Dimensional Objects by the Multiple-Plane Gerchberg–Saxton Algorithm Implemented into a Digital Signal Processor
Abstract
:1. Introduction
2. Materials and Methods
2.1. MPGS Algorithm
Algorithm 1 MPGS Algorithm |
|
2.2. Hardware
2.3. Optical Setup
2.4. Data Analysis
3. Results
3.1. Diffraction Patterns
3.2. Phase Retrieval
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schöck, M.; Mignant, D.L.; Chanan, G.A.; Wizinowich, P.L.; Dam, M.A.V. Atmospheric turbulence characterization with the Keck adaptive optics systems. I. Open-loop data. Appl. Opt. 2023, 42, 3705–3720. [Google Scholar] [CrossRef] [PubMed]
- Girkin, J.M.; Poland, S.; Wright, A.J. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 2009, 20, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Artal, P.; Chen, L.; Fernández, E.J.; Singer, B.; Manzanera, S.; Williams, D.R. Neural compensation for the eye’s optical aberrations. J. Vis. 2004, 4, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Toselli, I.; Gladysz, S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence. Opt. Express 2020, 28, 17347–17361. [Google Scholar] [CrossRef] [PubMed]
- Hampson, K.M.; Turcotte, R.; Miller, D.T.; Kurokawa, K.; Males, J.R.; Ji, N.; Booth, M.J. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 2021, 1, 68. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.W. Phase problem in crystallography. J. Opt. Soc. Am. A 1993, 10, 1045–1055. [Google Scholar] [CrossRef]
- White, J.; Wang, S.; Eschen, W.; Rothhardt, J. Real-time phase-retrieval and wavefront sensing enabled by an artificial neural network. Opt. Express 2021, 29, 9283–9293. [Google Scholar] [CrossRef] [PubMed]
- Barmherzig, D.A.; Sun, J.; Li, P.-N.; Lane, T.J.; Candès, E.J. Holographic phase retrieval and reference design. Inverse Probl. 2019, 35, 094001. [Google Scholar] [CrossRef]
- Shevkunov, I.; Katkovnik, V.; Petrov, N.V.; Egiazarian, K. Super-resolution microscopy for biological specimens: Lensless phase retrieval in noisy conditions. Biomed. Opt. Express 2018, 9, 5511–5523. [Google Scholar] [CrossRef] [PubMed]
- Shechtman, Y.; Eldar, Y.C.; Cohen, O.; Chapman, H.N.; Miao, J.; Segev, M. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Process. Mag. 2015, 32, 87–109. [Google Scholar] [CrossRef]
- Gerchberg, R.W.; Saxton, W.O. Practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–250. [Google Scholar]
- Zhu, Y.; Xie, S. GPU acceleration for phase retrieval for electromagnetic interference source image. In Proceedings of the Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, China, 18–21 May 2016. [Google Scholar]
- Rodríguez-Ramos, J.M.; Castelló, E.M.; Conde, C.D.; Valido, M.R.; Marichal-Hernández, J.G. 2D-FFT implementation on FPGA for wavefront phase recovery from the CAFADIS camera. In Proceedings of the Adaptive Optics Systems, Marseille, France, 23–28 June 2008. [Google Scholar]
- Smith, J.S.; Dean, B.H.; Haghani, S. Distributed computing architecture for image-based wavefront sensing and 2D FFTs. In Proceedings of the Advanced Software and Control for Astronomy, Orlando, FL, USA, 24–31 May 2006. [Google Scholar]
- Dean, B.H.; Zielinski, T.P. Heterogeneous processing architecture for phase-retrieval wavefront sensing. In Proceedings of the Frontiers in Optics 2012/Laser Science XXVIII, Rochester, NY, USA, 14–18 October 2012. [Google Scholar]
- Hansen, A.K. Coherent laser phase retrieval in the presence of measurement imperfections and incoherent light. Appl. Opt. 2017, 56, 7341–7345. [Google Scholar] [CrossRef] [PubMed]
- Buco, R.L.; Almoro, P.F. Enhanced multiple-plane phase retrieval using adaptive support. Opt. Lett. 2019, 44, 6045–6048. [Google Scholar] [CrossRef] [PubMed]
- Candès, E.J.; Eldar, Y.C.; Strohmer, T.; Voroninski, V. Phase retrieval via matrix completion. SIAM J. Imaging Sci. 2013, 6, 199–225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karitans, V.; Ozolinsh, M.; Fomins, S. Phase Retrieval of One-Dimensional Objects by the Multiple-Plane Gerchberg–Saxton Algorithm Implemented into a Digital Signal Processor. Optics 2024, 5, 514-522. https://doi.org/10.3390/opt5040038
Karitans V, Ozolinsh M, Fomins S. Phase Retrieval of One-Dimensional Objects by the Multiple-Plane Gerchberg–Saxton Algorithm Implemented into a Digital Signal Processor. Optics. 2024; 5(4):514-522. https://doi.org/10.3390/opt5040038
Chicago/Turabian StyleKaritans, Varis, Maris Ozolinsh, and Sergejs Fomins. 2024. "Phase Retrieval of One-Dimensional Objects by the Multiple-Plane Gerchberg–Saxton Algorithm Implemented into a Digital Signal Processor" Optics 5, no. 4: 514-522. https://doi.org/10.3390/opt5040038
APA StyleKaritans, V., Ozolinsh, M., & Fomins, S. (2024). Phase Retrieval of One-Dimensional Objects by the Multiple-Plane Gerchberg–Saxton Algorithm Implemented into a Digital Signal Processor. Optics, 5(4), 514-522. https://doi.org/10.3390/opt5040038