Oxygen-Plasma Surface Treatment of an Electrode Sheet Using Carbon from Japanese Distilled Liquor Waste for Double-layer Capacitors
Abstract
:1. Introduction
2. Experiments
2.1. Preparation of Activated Carbon
2.2. Preparation of Activated Carbon Sheet Electrode
2.3. Oxygen-Plasma Irradiation Experiment
2.4. Characterization of Activated Carbon Sheet Electrode
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Plenum Press: New York, NY, USA, 1999; p. 698. [Google Scholar]
- Kida, K.; Morimura, S.; Sonoda, Y. Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-Shochu making. J. Ferment. Bioeng. 1993, 75, 213–216. [Google Scholar] [CrossRef]
- Kida, K.; Sonoda, Y. Influence of mineral nutrients on high performance during anaerobic treatment of distillery wastewater from barley-Shochu making. J. Ferment. Bioeng. 1993, 75, 235–237. [Google Scholar] [CrossRef]
- Yokoyama, S.; Tarumi, S. Production and some properties of low-salt seasoning from Shochu distillery waste. J. Biosci. Bioeng. 2001, 92, 200. [Google Scholar] [CrossRef]
- Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. Available online: http://www.imo.org/en/OurWork/Environment/LCLP/Documents/LC1972.pdf (accessed on 15 August 2015).
- 1996 Protocol to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter. 1972. Available online: http://www.imo.org/en/OurWork/Environment/LCLP/Documents/PROTOCOLAmended2006.pdf (accessed on 15 August 2015).
- Wong, S.I.; Sunarso, J.; Wong, B.T.; Lin, H.; Yu, A.; Jia, B. Towards enhanced energy density of graphene-based supercapacitors: Current status, approaches, and future directions. J. Power Sources 2018, 396, 182–206. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Yang, Q.; Chen, Y. Graphene / V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim. Acta 2018, 287, 149–157. [Google Scholar] [CrossRef]
- Tiwari, A.P.; Chae, S.-H.; Ojha, G.P.; Dahal, B.; Mukhiya, T.; Lee, M.; Chhetri, K.; Kim, T.; Kim, H.-Y. Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 2019, 553, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Saeed, G.; Zhy, L.; Hui, K.N.; Kim, N.H.; Lee, J.H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2020, 403, 126352. [Google Scholar] [CrossRef]
- Lin, C.-C.; Huang, H.-C. Radio frequency oxygen–plasma treatment of carbon nanotube electrodes for electrochemical capacitors. J. Power Sources 2009, 188, 332–337. [Google Scholar] [CrossRef]
- Sahoo, G.; Polaki, S.R.; Ghosh, S.; Krishna, N.G.; Kamurddin, M.; Otrikov, K.K. Plasma-tuneable oxygen functionalization of vertical graphenes enhance electrochemical capacitor performance. Energy Storage Mater. 2018, 14, 297–305. [Google Scholar] [CrossRef]
- Norikazu, K.; Yamada, H.; Yajima, T.; Sugiyama, K. Surface properties of activated carbon treated by cold plasma heating. Thin Solid Films 2007, 515, 4192–4196. [Google Scholar] [CrossRef]
- Ishikawa, M.; Sakamoto, A.; Monta, M.; Matsuda, Y.; Ishida, K. Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 1996, 60, 233–238. [Google Scholar] [CrossRef]
- Lota, G.; Tyczkowski, J.; Kapica, R.; Lota, K.; Frackowiak, E. Carbon materials modified by plasma treatment as electrodes for supercapacitors. J. Power Sources 2010, 195, 7535–7539. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40, 667–674. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Mitani, T. Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity. J. Power Sources 2006, 158, 1517–1522. [Google Scholar] [CrossRef]
- Chen, C.; Ogino, A.; Wang, X.; Nagatsu, M. Oxygen functionalization of multiwall carbon nanotubes by Ar/H2O plasma treatment. Diam. Relat. Mater. 2011, 20, 153–156. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Processing Time (min) | Power Output (W) | Distance between Electrodes (cm) | Oxygen Pressure (Pa) | Specific Capacitances (F g−1) |
---|---|---|---|---|---|
Without plasma treatment | 234 | ||||
PT1 | 30 | 40 | 3 | 40 | 219 |
PT2/PO3/DE1 | 60 | 40 | 3 | 40 | 241 |
PT3 | 90 | 40 | 3 | 40 | 223 |
PO1 | 60 | 20 | 3 | 40 | 211 |
PO2 | 60 | 30 | 3 | 40 | 240 |
PO4 | 60 | 60 | 3 | 40 | 239 |
PO5 | 60 | 80 | 3 | 40 | 222 |
DE2 | 60 | 40 | 8 | 40 | 229 |
DE3/OP2 | 60 | 40 | 13 | 40 | 247 |
OP1 | 60 | 40 | 13 | 20 | 167 |
OP3 | 60 | 40 | 13 | 60 | 160 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tashima, D.; Hirano, M.; Kitazaki, S.; Eguchi, T.; Kumagai, S. Oxygen-Plasma Surface Treatment of an Electrode Sheet Using Carbon from Japanese Distilled Liquor Waste for Double-layer Capacitors. Electrochem 2020, 1, 322-328. https://doi.org/10.3390/electrochem1030020
Tashima D, Hirano M, Kitazaki S, Eguchi T, Kumagai S. Oxygen-Plasma Surface Treatment of an Electrode Sheet Using Carbon from Japanese Distilled Liquor Waste for Double-layer Capacitors. Electrochem. 2020; 1(3):322-328. https://doi.org/10.3390/electrochem1030020
Chicago/Turabian StyleTashima, Daisuke, Masaki Hirano, Satoshi Kitazaki, Takuya Eguchi, and Seiji Kumagai. 2020. "Oxygen-Plasma Surface Treatment of an Electrode Sheet Using Carbon from Japanese Distilled Liquor Waste for Double-layer Capacitors" Electrochem 1, no. 3: 322-328. https://doi.org/10.3390/electrochem1030020